Upload 13 files
Browse files- 1_Pooling/config.json +7 -0
- README.md +123 -1
- config.json +27 -0
- config_sentence_transformers.json +7 -0
- eval/binary_classification_evaluation_Valid_Topic_Boundaries_results.csv +11 -0
- merges.txt +0 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,125 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
---
|
9 |
+
|
10 |
+
# {MODEL_NAME}
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
+
|
14 |
+
<!--- Describe your model here -->
|
15 |
+
|
16 |
+
## Usage (Sentence-Transformers)
|
17 |
+
|
18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U sentence-transformers
|
22 |
+
```
|
23 |
+
|
24 |
+
Then you can use the model like this:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from sentence_transformers import SentenceTransformer
|
28 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
+
|
30 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
+
embeddings = model.encode(sentences)
|
32 |
+
print(embeddings)
|
33 |
+
```
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## Usage (HuggingFace Transformers)
|
38 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModel
|
42 |
+
import torch
|
43 |
+
|
44 |
+
|
45 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
46 |
+
def mean_pooling(model_output, attention_mask):
|
47 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
48 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
49 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
50 |
+
|
51 |
+
|
52 |
+
# Sentences we want sentence embeddings for
|
53 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
+
|
55 |
+
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
57 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
58 |
+
|
59 |
+
# Tokenize sentences
|
60 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
61 |
+
|
62 |
+
# Compute token embeddings
|
63 |
+
with torch.no_grad():
|
64 |
+
model_output = model(**encoded_input)
|
65 |
+
|
66 |
+
# Perform pooling. In this case, mean pooling.
|
67 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
+
|
69 |
+
print("Sentence embeddings:")
|
70 |
+
print(sentence_embeddings)
|
71 |
+
```
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
## Evaluation Results
|
76 |
+
|
77 |
+
<!--- Describe how your model was evaluated -->
|
78 |
+
|
79 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
+
|
81 |
+
|
82 |
+
## Training
|
83 |
+
The model was trained with the parameters:
|
84 |
+
|
85 |
+
**DataLoader**:
|
86 |
+
|
87 |
+
`torch.utils.data.dataloader.DataLoader` of length 6033 with parameters:
|
88 |
+
```
|
89 |
+
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
90 |
+
```
|
91 |
+
|
92 |
+
**Loss**:
|
93 |
+
|
94 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
95 |
+
|
96 |
+
Parameters of the fit()-Method:
|
97 |
+
```
|
98 |
+
{
|
99 |
+
"epochs": 10,
|
100 |
+
"evaluation_steps": 0,
|
101 |
+
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
|
102 |
+
"max_grad_norm": 1,
|
103 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
104 |
+
"optimizer_params": {
|
105 |
+
"lr": 2e-05
|
106 |
+
},
|
107 |
+
"scheduler": "WarmupLinear",
|
108 |
+
"steps_per_epoch": null,
|
109 |
+
"warmup_steps": 10000,
|
110 |
+
"weight_decay": 0.01
|
111 |
+
}
|
112 |
+
```
|
113 |
+
|
114 |
+
|
115 |
+
## Full Model Architecture
|
116 |
+
```
|
117 |
+
SentenceTransformer(
|
118 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
|
119 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
120 |
+
)
|
121 |
+
```
|
122 |
+
|
123 |
+
## Citing & Authors
|
124 |
+
|
125 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.18.0",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.0",
|
4 |
+
"transformers": "4.18.0",
|
5 |
+
"pytorch": "1.11.0"
|
6 |
+
}
|
7 |
+
}
|
eval/binary_classification_evaluation_Valid_Topic_Boundaries_results.csv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cossim_accuracy,cossim_accuracy_threshold,cossim_f1,cossim_precision,cossim_recall,cossim_f1_threshold,cossim_ap,manhatten_accuracy,manhatten_accuracy_threshold,manhatten_f1,manhatten_precision,manhatten_recall,manhatten_f1_threshold,manhatten_ap,euclidean_accuracy,euclidean_accuracy_threshold,euclidean_f1,euclidean_precision,euclidean_recall,euclidean_f1_threshold,euclidean_ap,dot_accuracy,dot_accuracy_threshold,dot_f1,dot_precision,dot_recall,dot_f1_threshold,dot_ap
|
2 |
+
0,-1,0.8718726511328251,-0.5806294083595276,0.9314588508982294,0.8725785622040465,0.9988604515075918,-0.5806294083595276,0.9448495311774219,0.8724363792548051,581.9130859375,0.9316430953202253,0.8734201094133183,0.9981828821337275,610.8831176757812,0.9418916371225208,0.8722484698808117,28.706748962402344,0.9316873609416493,0.8724862888482633,0.9995072222735533,29.89052963256836,0.9419012808926447,0.8723558466659508,-127.54020690917969,0.9316270040980659,0.8737458193979933,0.9977209030151837,-127.54020690917969,0.9454112161354993
|
3 |
+
1,-1,0.8716042091699775,-0.9183016419410706,0.9313960326453334,0.8716241610738255,0.9999692013920971,-0.9183016419410706,0.9306215564881994,0.8718994953291098,674.1887817382812,0.9315115678282336,0.8722014674657994,0.9994764236656503,674.1887817382812,0.9308649610145874,0.8718994953291098,32.22175216674805,0.931488763238713,0.8721145836132534,0.9995380208814562,33.30061721801758,0.926616894185984,0.8718458069365403,-198.45037841796875,0.9314384151593453,0.8723078164071952,0.9991684375866211,-205.07373046875,0.9367382013739534
|
4 |
+
2,-1,0.8715773649736926,-0.882503867149353,0.9313826735513483,0.8716007623956404,0.9999692013920971,-0.9365043044090271,0.9300293182223586,0.8717921185439708,734.317138671875,0.9314482560643031,0.8722077363511733,0.9993224306261357,734.317138671875,0.9329743208053412,0.871657897562547,36.25634765625,0.9314148818660432,0.8717508055853921,0.9998460069604854,36.659934997558594,0.9283484772751359,0.8716847417588317,-252.74533081054688,0.9314341452219067,0.871714324070345,0.9999384027841941,-271.25390625,0.9333017628997994
|
5 |
+
3,-1,0.8715773649736926,-0.9233579635620117,0.9313826735513483,0.8716007623956404,0.9999692013920971,-0.94148850440979,0.9279728554551627,0.8716310533662622,797.5691528320312,0.9314113597246128,0.8716276073125554,1.0,833.8800048828125,0.9325655370380966,0.8716042091699775,39.929046630859375,0.9313940645753547,0.871644115120275,0.9999384027841941,39.929046630859375,0.926549293071476,0.8715773649736926,-330.1188049316406,0.9313826735513483,0.8716007623956404,0.9999692013920971,-361.7674560546875,0.9309662972071203
|
6 |
+
4,-1,0.8715773649736926,-0.958938717842102,0.9313826735513483,0.8716007623956404,0.9999692013920971,-0.958938717842102,0.9237352629382556,0.871657897562547,799.770751953125,0.931416849564631,0.8717308415230116,0.9998768055683883,799.770751953125,0.9295486243592767,0.8716310533662622,41.84960174560547,0.9314113597246128,0.8716276073125554,1.0,41.84960174560547,0.9228772743484609,0.8716310533662622,-366.80645751953125,0.9314093921225508,0.8716475610083492,0.9999692013920971,-366.80645751953125,0.9291196945138074
|
7 |
+
5,-1,0.8716310533662622,-0.891035258769989,0.9314113597246128,0.8716276073125554,1.0,-0.9004808068275452,0.9222100791396741,0.871657897562547,817.2085571289062,0.9314247192300521,0.8716510067114094,1.0,817.2085571289062,0.9283259846760687,0.8716042091699775,42.829139709472656,0.9313960326453334,0.8716241610738255,0.9999692013920971,42.829139709472656,0.9219676426293072,0.8716042091699775,-385.53192138671875,0.9313960326453334,0.8716241610738255,0.9999692013920971,-405.5646057128906,0.9237537040238877
|
8 |
+
6,-1,0.8716042091699775,-0.9185487031936646,0.9313960326453334,0.8716241610738255,0.9999692013920971,-0.9185487031936646,0.9183475746199087,0.8717384301514013,779.2967529296875,0.9314608675694285,0.8717611363209193,0.9999384027841941,784.8831176757812,0.9252783934658072,0.8716310533662622,44.17878723144531,0.9314113597246128,0.8716276073125554,1.0,44.17878723144531,0.9182847934033853,0.8716310533662622,-414.99420166015625,0.9314093921225508,0.8716475610083492,0.9999692013920971,-414.99420166015625,0.9173291499558064
|
9 |
+
7,-1,0.8716310533662622,-0.8870944976806641,0.9314113597246128,0.8716276073125554,1.0,-0.9236519932746887,0.9201080072611685,0.8717115859551166,793.271728515625,0.9314376712623559,0.8718375678143632,0.9997844097446795,793.271728515625,0.9267098274621985,0.8715773649736926,45.28962707519531,0.9313826735513483,0.8716007623956404,0.9999692013920971,45.28962707519531,0.9204000051611257,0.8715773649736926,-433.1257019042969,0.9313826735513483,0.8716007623956404,0.9999692013920971,-433.1257019042969,0.9173815080095685
|
10 |
+
8,-1,0.8716310533662622,-0.8718323111534119,0.9314113597246128,0.8716276073125554,1.0,-0.9116883277893066,0.9184184649439073,0.8716310533662622,769.4930419921875,0.9313826735513483,0.8716007623956404,0.9999692013920971,842.1710815429688,0.9257301839007596,0.8716042091699775,44.77383804321289,0.9313940645753547,0.871644115120275,0.9999384027841941,44.77383804321289,0.9189387816576033,0.8715773649736926,-443.2563781738281,0.9313826735513483,0.8716007623956404,0.9999692013920971,-448.7958984375,0.9141911174673697
|
11 |
+
9,-1,0.8716847417588317,-0.8646078705787659,0.9314341452219067,0.871714324070345,0.9999384027841941,-0.876809298992157,0.9173819020599622,0.8716310533662622,828.3596801757812,0.9314113597246128,0.8716276073125554,1.0,828.3596801757812,0.923616384821353,0.8716310533662622,44.748661041259766,0.9314113597246128,0.8716276073125554,1.0,45.308067321777344,0.9177777685547296,0.8716310533662622,-445.9535827636719,0.9314093921225508,0.8716475610083492,0.9999692013920971,-445.9535827636719,0.9137153993379528
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b6d1b2aa7c3202301dd5d66d359cb8281cc29e0c31eb94d4e485a9edbc469e6
|
3 |
+
size 498652017
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"errors": "replace", "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": "<mask>", "add_prefix_space": false, "trim_offsets": true, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "roberta-base", "tokenizer_class": "RobertaTokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|