--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-large-mms-1b-kazakh-bache results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: kk split: test args: kk metrics: - name: Wer type: wer value: 0.28966942148760333 --- # wav2vec2-large-mms-1b-kazakh-bache This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2490 - Wer: 0.2897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.477 | 1.92 | 100 | 0.2687 | 0.3128 | | 0.2077 | 3.85 | 200 | 0.2490 | 0.2897 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3