update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
- fleurs
|
@@ -13,15 +15,15 @@ model-index:
|
|
13 |
name: Automatic Speech Recognition
|
14 |
type: automatic-speech-recognition
|
15 |
dataset:
|
16 |
-
name:
|
17 |
type: fleurs
|
18 |
config: ps_af
|
19 |
split: test
|
20 |
-
args: ps_af
|
21 |
metrics:
|
22 |
- name: Wer
|
23 |
type: wer
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -29,11 +31,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
29 |
|
30 |
# facebook/wav2vec2-xls-r-300m
|
31 |
|
32 |
-
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Wer: 0.
|
36 |
-
- Cer: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
+
- automatic-speech-recognition
|
5 |
+
- google/fleurs
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
- fleurs
|
|
|
15 |
name: Automatic Speech Recognition
|
16 |
type: automatic-speech-recognition
|
17 |
dataset:
|
18 |
+
name: GOOGLE/FLEURS - PS_AF
|
19 |
type: fleurs
|
20 |
config: ps_af
|
21 |
split: test
|
22 |
+
args: 'Config: ps_af, Training split: train+validation, Eval split: test'
|
23 |
metrics:
|
24 |
- name: Wer
|
25 |
type: wer
|
26 |
+
value: 0.5159447476125512
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
# facebook/wav2vec2-xls-r-300m
|
33 |
|
34 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/FLEURS - PS_AF dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.9162
|
37 |
+
- Wer: 0.5159
|
38 |
+
- Cer: 0.1972
|
39 |
|
40 |
## Model description
|
41 |
|