--- license: apache-2.0 tags: - automatic-speech-recognition - google/fleurs - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: facebook/wav2vec2-xls-r-300m results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: GOOGLE/FLEURS - PS_AF type: fleurs config: ps_af split: test args: 'Config: ps_af, Training split: train+validation, Eval split: test' metrics: - name: Wer type: wer value: 0.5137278308321964 --- # facebook/wav2vec2-xls-r-300m This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/FLEURS - PS_AF dataset. It achieves the following results on the evaluation set: - Loss: 0.9154 - Wer: 0.5137 - Cer: 0.1966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 5.0767 | 6.33 | 500 | 4.8783 | 1.0 | 1.0 | | 3.1156 | 12.66 | 1000 | 3.0990 | 1.0 | 1.0 | | 1.3506 | 18.99 | 1500 | 1.1056 | 0.7031 | 0.2889 | | 0.9997 | 25.32 | 2000 | 0.9191 | 0.5944 | 0.2301 | | 0.7838 | 31.65 | 2500 | 0.8952 | 0.5556 | 0.2152 | | 0.6665 | 37.97 | 3000 | 0.8908 | 0.5252 | 0.2017 | | 0.6265 | 44.3 | 3500 | 0.9063 | 0.5133 | 0.1954 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2