File size: 2,667 Bytes
6c444e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
language:
- ps
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Small PS - Hanif Rahman
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 17.0
      type: mozilla-foundation/common_voice_17_0
      config: ps_af
      split: test+validation
      args: 'config: ps, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 40.057062876830315
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small PS - Hanif Rahman

This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5707
- Wer Ortho: 40.7188
- Wer: 40.0571

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer Ortho | Wer     |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.9719        | 0.2268 | 100  | 0.8098          | 59.2165   | 59.0924 |
| 0.8427        | 0.4535 | 200  | 0.7384          | 55.1748   | 54.5596 |
| 0.7493        | 0.6803 | 300  | 0.6743          | 48.8614   | 48.3473 |
| 0.684         | 0.9070 | 400  | 0.6384          | 46.1094   | 45.5534 |
| 0.4819        | 1.1338 | 500  | 0.6348          | 44.3341   | 43.7123 |
| 0.4777        | 1.3605 | 600  | 0.6026          | 43.6758   | 42.9264 |
| 0.4433        | 1.5873 | 700  | 0.5789          | 41.7386   | 40.9991 |
| 0.446         | 1.8141 | 800  | 0.5647          | 40.2709   | 39.5995 |
| 0.3166        | 2.0408 | 900  | 0.5681          | 40.4490   | 39.7771 |
| 0.3187        | 2.2676 | 1000 | 0.5707          | 40.7188   | 40.0571 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0