Bhaskar Kumar commited on
Commit
e917f3e
1 Parent(s): 0192cf1

Initial commit of my Keras model

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md CHANGED
@@ -18,4 +18,88 @@ The above model is a simple neural network built using TensorFlow/Keras. It is
18
 
19
 
20
 
 
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
 
20
 
21
+ # Keras Model for Time Series Prediction
22
 
23
+ This repository contains a Keras model trained for time series prediction. The model has been deployed to Hugging Face Hub and can be used to predict numeric values based on timestamped data.
24
+
25
+ ## Model Overview
26
+
27
+ The model is a simple neural network built using Keras. It is designed to perform regression tasks, predicting a numeric value from input features.
28
+
29
+ ### Architecture
30
+
31
+ - **Input Layer**: 10 neurons, ReLU activation
32
+ - **Hidden Layer**: 10 neurons, ReLU activation
33
+ - **Output Layer**: 1 neuron (for regression)
34
+
35
+ ## How to Use the Model
36
+
37
+ To use this model, follow the steps below:
38
+
39
+ ### 1. Install Required Libraries
40
+
41
+ Make sure you have the necessary libraries installed:
42
+
43
+ ```bash
44
+ pip install tensorflow huggingface-hub pandas matplotlib
45
+
46
+ #load the model from the Hugging Face Hub:
47
+ import tensorflow as tf
48
+ from huggingface_hub import from_pretrained_keras
49
+ import pandas as pd
50
+ import numpy as np
51
+ import matplotlib.pyplot as plt
52
+
53
+ # Load the model from Hugging Face Hub
54
+ model = from_pretrained_keras("iiitbh18/bhaskar1")
55
+
56
+ # Prepare Dummy Data
57
+
58
+ # Create a DataFrame with dummy data
59
+ dummy_data = {
60
+ 'timestamp': [
61
+ '2024-08-07 02:43:28.788',
62
+ '2024-08-07 02:43:28.788',
63
+ '2024-08-07 02:43:43.788',
64
+ '2024-08-07 02:43:43.788',
65
+ '2024-08-07 02:43:58.788'
66
+ ],
67
+ 'value': [
68
+ 99.00000005960464,
69
+ 98.90000000596046,
70
+ 98.70000004768372,
71
+ 99.00000005960464,
72
+ 98.89999993145466
73
+ ]
74
+ }
75
+
76
+ df = pd.DataFrame(dummy_data)
77
+
78
+ #Prepare Data for Prediction
79
+
80
+ X_dummy = df['value'].values.reshape(-1, 1) # Reshape to match model's input shape
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+ # Make Predictions
90
+
91
+ predictions = model.predict(X_dummy)
92
+ print("Predictions:", predictions)
93
+
94
+ #Visualize the Results
95
+
96
+ # Plot actual vs. predicted values
97
+ plt.figure(figsize=(10, 6))
98
+ plt.scatter(df['timestamp'], df['value'], color='blue', label='Actual Values')
99
+ plt.scatter(df['timestamp'], predictions, color='red', label='Predicted Values')
100
+ plt.xlabel('Timestamp')
101
+ plt.ylabel('Value')
102
+ plt.title('Actual vs Predicted Values')
103
+ plt.legend()
104
+ plt.xticks(rotation=45)
105
+ plt.show()