micheller7171 commited on
Commit
c00d17c
1 Parent(s): ed1346a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -3
README.md CHANGED
@@ -1,3 +1,115 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ tags:
6
+ - biology
7
+ - CV
8
+ - images
9
+ - animals
10
+ - lepidoptera
11
+ - butterflies
12
+ - detection
13
+ - heliconius
14
+ - forewings
15
+ - hindwings
16
+ - separated wings
17
+ - full body
18
+ - butterfly
19
+ - RGB
20
+ - ruler
21
+ - whitebalance
22
+ - label
23
+ - colorchecker
24
+ ---
25
+
26
+ ## Model Card for butterfly_detection_yolo
27
+
28
+ This model takes in images of butterflies as photographed for museum collections and detects butterfly components (L/R forewings, L/R hindwings and body) as well as color checkers and metadata labels.
29
+ The detection model described here is used in the repository https://github.com/Imageomics/wing-segmentation to detect components and use Meta's Segment-Anything (SAM) model for segmentation of components.
30
+
31
+ ## Model Details
32
+
33
+ yolo_detection_8m_shear_10.0_scale_0.5_translate_0.1_fliplr_0.0_best.pt is the butterfly detection model.
34
+
35
+ The yolo v8 detection model was trained on a dataset of 800 total images from the [Heliconius Collection-Cambridge Butterfly](imageomics/Heliconius-Collection_Cambridge-Butterfly), OM_STRI, and Monteiro datasets. The model uses the pretrained yolov8m.pt model.
36
+
37
+ ## Model Description
38
+
39
+ The model is responsible for taking an input image (RGB) and generating bounding boxes for all classes below that are found in the image. Data augmentations applied during training include shear (10.0), scale (0.5), and translate (0.1). The model was trained for 50 epochs with an image size of 256. Note that despite defining an image size of 256, the normalized masks predicted by yolo can be rescaled to the original image size.
40
+
41
+ ### Segmentation Classes
42
+ [`pixel class`] corresponding category
43
+
44
+ - [0] background
45
+ - [1] right_forewing
46
+ - [2] left_forewing
47
+ - [3] right_hindwing
48
+ - [4] left_hindwing
49
+ - [5] ruler
50
+ - [6] white_balance
51
+ - [7] label
52
+ - [8] color_card
53
+ - [9] body
54
+
55
+ ### Details
56
+
57
+ model.train(data=YAML,
58
+ imgsz=256,
59
+ epochs=50,
60
+ batch=16,
61
+ device=DEVICE,
62
+ optimizer='auto',
63
+ verbose=True,
64
+ val=True,
65
+ shear=10.0,
66
+ scale=0.5,
67
+ translate=0.1,
68
+ fliplr = 0.0
69
+ )
70
+
71
+ ## Metrics
72
+
73
+ Class Images Instances Box(P R mAP50 mAP50-95)
74
+ all 64 358 0.979 0.887 0.919 0.877
75
+ background 64 3 1 0 0.315 0.169
76
+ right_forewing 64 58 0.995 0.983 0.986 0.977
77
+ left_forewing 64 51 0.975 1 0.985 0.982
78
+ right_hindwing 64 59 0.997 0.966 0.993 0.977
79
+ left_hindwing 64 50 0.975 1 0.993 0.98
80
+ ruler 64 31 0.951 1 0.995 0.952
81
+ white_balance 64 18 0.984 1 0.995 0.995
82
+ label 64 50 0.996 1 0.995 0.935
83
+ color_card 64 24 0.988 1 0.995 0.992
84
+ body 64 14 0.928 0.921 0.939 0.815
85
+
86
+ **Developed by:** Michelle Ramirez
87
+
88
+ ## How to Get Started with the Model
89
+
90
+ To view applications of how to load in the model file and predict masks on images, please refer to [this github repository](https://github.com/Imageomics/wing-segmentation)
91
+
92
+ ## Citation
93
+
94
+ **BibTeX:**
95
+
96
+ ```
97
+ @software{Ramirez_Lepidoptera_Wing_Segmentation_2024,
98
+ author = {Ramirez, Michelle},
99
+ doi = {10.5281/zenodo.10869579},
100
+ month = mar,
101
+ title = {{Lepidoptera Wing Segmentation}},
102
+ url = {https://github.com/Imageomics/wing-segmentation},
103
+ version = {1.0.0},
104
+ year = {2024}
105
+ }
106
+ ```
107
+
108
+ **APA:**
109
+
110
+ Ramirez, M. (2024). Lepidoptera Wing Segmentation (Version 1.0.0) [Computer software]. https://doi.org/10.5281/zenodo.10869579
111
+
112
+ ## Acknowledgements
113
+
114
+ The [Imageomics Institute](https://imageomics.org) is funded by the US National Science Foundation's Harnessing the Data Revolution (HDR) program under [Award #2118240](https://www.nsf.gov/awardsearch/showAward?AWD_ID=2118240) (Imageomics: A New Frontier of Biological Information Powered by Knowledge-Guided Machine Learning). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
115
+