--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7289719626168224 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6419 - Accuracy: 0.7290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0627 | 1.0 | 15 | 0.9620 | 0.5467 | | 0.8137 | 2.0 | 30 | 0.7780 | 0.6589 | | 0.7516 | 3.0 | 45 | 0.7737 | 0.6822 | | 0.6395 | 4.0 | 60 | 0.7195 | 0.6869 | | 0.579 | 5.0 | 75 | 0.6742 | 0.7150 | | 0.5505 | 6.0 | 90 | 0.6526 | 0.7243 | | 0.5312 | 7.0 | 105 | 0.6616 | 0.7290 | | 0.4793 | 8.0 | 120 | 0.6470 | 0.7430 | | 0.4443 | 9.0 | 135 | 0.6375 | 0.7383 | | 0.4685 | 10.0 | 150 | 0.6419 | 0.7290 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0