shyam-incedoinc
commited on
Commit
•
195c8ae
1
Parent(s):
2828420
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is a fine-tuned model, trained on 400+ test scripts, written in Java using `Cucumber` and `Selenium` frameworks.
|
2 |
+
Base model used is `codellama/CodeLlama-7b-hf`. The dataset used can be found at `shyam-incedoinc/qa-finetune-dataset`.
|
3 |
+
|
4 |
+
Training metrics can be seen in the metrics section.
|
5 |
+
|
6 |
+
# Training Parameters
|
7 |
+
```
|
8 |
+
num_train_epochs=25,
|
9 |
+
per_device_train_batch_size=2,
|
10 |
+
gradient_accumulation_steps=1,
|
11 |
+
gradient_checkpointing=True,
|
12 |
+
optim="paged_adamw_32bit",
|
13 |
+
#save_steps=save_steps,
|
14 |
+
logging_steps=25,
|
15 |
+
save_strategy="epoch",
|
16 |
+
learning_rate=2e-4,
|
17 |
+
weight_decay=0.001,
|
18 |
+
fp16=True,
|
19 |
+
bf16=False,
|
20 |
+
max_grad_norm=0.3,
|
21 |
+
warmup_ratio=0.03,
|
22 |
+
#max_steps=max_steps,
|
23 |
+
group_by_length=False,
|
24 |
+
lr_scheduler_type="cosine",
|
25 |
+
disable_tqdm=False,
|
26 |
+
report_to="tensorboard",
|
27 |
+
seed=42
|
28 |
+
)
|
29 |
+
|
30 |
+
LoraConfig(
|
31 |
+
lora_alpha=16,
|
32 |
+
lora_dropout=0.1,
|
33 |
+
r=64,
|
34 |
+
bias="none",
|
35 |
+
task_type="CAUSAL_LM",
|
36 |
+
)
|
37 |
+
```
|
38 |
+
|
39 |
+
# Run the below code block for getting inferences from this model.
|
40 |
+
|
41 |
+
```
|
42 |
+
import torch
|
43 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
44 |
+
|
45 |
+
hf_model_repo = "shyam-incedoinc/codellama-7b-hf-peft-qlora-finetuned-qa"
|
46 |
+
|
47 |
+
# Get the tokenizer
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_model_repo)
|
49 |
+
|
50 |
+
# Load the model
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(hf_model_repo, load_in_4bit=True,
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
device_map="auto")
|
54 |
+
|
55 |
+
# Load dataset from the hub
|
56 |
+
hf_data_repo = "shyam-incedoinc/qa-finetune-dataset"
|
57 |
+
train_dataset = load_dataset(hf_data_repo, split="train")
|
58 |
+
valid_dataset = load_dataset(hf_data_repo, split="validation")
|
59 |
+
|
60 |
+
# Load the sample
|
61 |
+
sample = valid_dataset[randrange(len(valid_dataset))]['text']
|
62 |
+
groundtruth = sample.split("### Output:\n")[1]
|
63 |
+
prompt = sample.split("### Output:\n")[0]+"### Output:\n"
|
64 |
+
|
65 |
+
# Generate response
|
66 |
+
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
|
67 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=1024,
|
68 |
+
do_sample=True, top_p=0.9, temperature=0.6)
|
69 |
+
|
70 |
+
# Print the result
|
71 |
+
print(f"Generated response:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]}")
|
72 |
+
print(f"Ground Truth:\n{groundtruth}")
|
73 |
+
```
|