Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,1064 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# 1 开源清单
|
2 |
|
3 |
本次开源2个通用向量编码模型和一个针对dialogue进行编码的向量模型,同时开源全量160万对话重写数据集和20万的难负例的检索数据集。
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- mteb
|
8 |
+
model-index:
|
9 |
+
- name: stella-base-zh-v3-1792d
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: STS
|
13 |
+
dataset:
|
14 |
+
type: C-MTEB/AFQMC
|
15 |
+
name: MTEB AFQMC
|
16 |
+
config: default
|
17 |
+
split: validation
|
18 |
+
revision: None
|
19 |
+
metrics:
|
20 |
+
- type: cos_sim_pearson
|
21 |
+
value: 54.5145388936202
|
22 |
+
- type: cos_sim_spearman
|
23 |
+
value: 59.223125058197134
|
24 |
+
- type: euclidean_pearson
|
25 |
+
value: 57.819377838734695
|
26 |
+
- type: euclidean_spearman
|
27 |
+
value: 59.22310494948463
|
28 |
+
- type: manhattan_pearson
|
29 |
+
value: 57.44029759610327
|
30 |
+
- type: manhattan_spearman
|
31 |
+
value: 58.88336250854381
|
32 |
+
- task:
|
33 |
+
type: STS
|
34 |
+
dataset:
|
35 |
+
type: C-MTEB/ATEC
|
36 |
+
name: MTEB ATEC
|
37 |
+
config: default
|
38 |
+
split: test
|
39 |
+
revision: None
|
40 |
+
metrics:
|
41 |
+
- type: cos_sim_pearson
|
42 |
+
value: 54.544243591344866
|
43 |
+
- type: cos_sim_spearman
|
44 |
+
value: 58.43052988038229
|
45 |
+
- type: euclidean_pearson
|
46 |
+
value: 62.1608405146189
|
47 |
+
- type: euclidean_spearman
|
48 |
+
value: 58.43052762862396
|
49 |
+
- type: manhattan_pearson
|
50 |
+
value: 61.88443779892169
|
51 |
+
- type: manhattan_spearman
|
52 |
+
value: 58.26899143609596
|
53 |
+
- task:
|
54 |
+
type: Classification
|
55 |
+
dataset:
|
56 |
+
type: mteb/amazon_reviews_multi
|
57 |
+
name: MTEB AmazonReviewsClassification (zh)
|
58 |
+
config: zh
|
59 |
+
split: test
|
60 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
61 |
+
metrics:
|
62 |
+
- type: accuracy
|
63 |
+
value: 46.343999999999994
|
64 |
+
- type: f1
|
65 |
+
value: 44.46931958420461
|
66 |
+
- task:
|
67 |
+
type: STS
|
68 |
+
dataset:
|
69 |
+
type: C-MTEB/BQ
|
70 |
+
name: MTEB BQ
|
71 |
+
config: default
|
72 |
+
split: test
|
73 |
+
revision: None
|
74 |
+
metrics:
|
75 |
+
- type: cos_sim_pearson
|
76 |
+
value: 68.52081000538426
|
77 |
+
- type: cos_sim_spearman
|
78 |
+
value: 70.44089935351529
|
79 |
+
- type: euclidean_pearson
|
80 |
+
value: 69.24671010626395
|
81 |
+
- type: euclidean_spearman
|
82 |
+
value: 70.44090281761693
|
83 |
+
- type: manhattan_pearson
|
84 |
+
value: 69.00737718109357
|
85 |
+
- type: manhattan_spearman
|
86 |
+
value: 70.24344902456502
|
87 |
+
- task:
|
88 |
+
type: Clustering
|
89 |
+
dataset:
|
90 |
+
type: C-MTEB/CLSClusteringP2P
|
91 |
+
name: MTEB CLSClusteringP2P
|
92 |
+
config: default
|
93 |
+
split: test
|
94 |
+
revision: None
|
95 |
+
metrics:
|
96 |
+
- type: v_measure
|
97 |
+
value: 42.86119436460332
|
98 |
+
- task:
|
99 |
+
type: Clustering
|
100 |
+
dataset:
|
101 |
+
type: C-MTEB/CLSClusteringS2S
|
102 |
+
name: MTEB CLSClusteringS2S
|
103 |
+
config: default
|
104 |
+
split: test
|
105 |
+
revision: None
|
106 |
+
metrics:
|
107 |
+
- type: v_measure
|
108 |
+
value: 39.97521728440642
|
109 |
+
- task:
|
110 |
+
type: Reranking
|
111 |
+
dataset:
|
112 |
+
type: C-MTEB/CMedQAv1-reranking
|
113 |
+
name: MTEB CMedQAv1
|
114 |
+
config: default
|
115 |
+
split: test
|
116 |
+
revision: None
|
117 |
+
metrics:
|
118 |
+
- type: map
|
119 |
+
value: 88.34151862240452
|
120 |
+
- type: mrr
|
121 |
+
value: 90.40380952380953
|
122 |
+
- task:
|
123 |
+
type: Reranking
|
124 |
+
dataset:
|
125 |
+
type: C-MTEB/CMedQAv2-reranking
|
126 |
+
name: MTEB CMedQAv2
|
127 |
+
config: default
|
128 |
+
split: test
|
129 |
+
revision: None
|
130 |
+
metrics:
|
131 |
+
- type: map
|
132 |
+
value: 89.06288758814637
|
133 |
+
- type: mrr
|
134 |
+
value: 90.91285714285713
|
135 |
+
- task:
|
136 |
+
type: Retrieval
|
137 |
+
dataset:
|
138 |
+
type: C-MTEB/CmedqaRetrieval
|
139 |
+
name: MTEB CmedqaRetrieval
|
140 |
+
config: default
|
141 |
+
split: dev
|
142 |
+
revision: None
|
143 |
+
metrics:
|
144 |
+
- type: map_at_1
|
145 |
+
value: 25.651000000000003
|
146 |
+
- type: map_at_10
|
147 |
+
value: 38.576
|
148 |
+
- type: map_at_100
|
149 |
+
value: 40.534
|
150 |
+
- type: map_at_1000
|
151 |
+
value: 40.64
|
152 |
+
- type: map_at_3
|
153 |
+
value: 34.016000000000005
|
154 |
+
- type: map_at_5
|
155 |
+
value: 36.675999999999995
|
156 |
+
- type: mrr_at_1
|
157 |
+
value: 39.06
|
158 |
+
- type: mrr_at_10
|
159 |
+
value: 47.278
|
160 |
+
- type: mrr_at_100
|
161 |
+
value: 48.272999999999996
|
162 |
+
- type: mrr_at_1000
|
163 |
+
value: 48.314
|
164 |
+
- type: mrr_at_3
|
165 |
+
value: 44.461
|
166 |
+
- type: mrr_at_5
|
167 |
+
value: 46.107
|
168 |
+
- type: ndcg_at_1
|
169 |
+
value: 39.06
|
170 |
+
- type: ndcg_at_10
|
171 |
+
value: 45.384
|
172 |
+
- type: ndcg_at_100
|
173 |
+
value: 52.796
|
174 |
+
- type: ndcg_at_1000
|
175 |
+
value: 54.55
|
176 |
+
- type: ndcg_at_3
|
177 |
+
value: 39.497
|
178 |
+
- type: ndcg_at_5
|
179 |
+
value: 42.189
|
180 |
+
- type: precision_at_1
|
181 |
+
value: 39.06
|
182 |
+
- type: precision_at_10
|
183 |
+
value: 10.17
|
184 |
+
- type: precision_at_100
|
185 |
+
value: 1.6179999999999999
|
186 |
+
- type: precision_at_1000
|
187 |
+
value: 0.184
|
188 |
+
- type: precision_at_3
|
189 |
+
value: 22.247
|
190 |
+
- type: precision_at_5
|
191 |
+
value: 16.529
|
192 |
+
- type: recall_at_1
|
193 |
+
value: 25.651000000000003
|
194 |
+
- type: recall_at_10
|
195 |
+
value: 56.82899999999999
|
196 |
+
- type: recall_at_100
|
197 |
+
value: 87.134
|
198 |
+
- type: recall_at_1000
|
199 |
+
value: 98.709
|
200 |
+
- type: recall_at_3
|
201 |
+
value: 39.461
|
202 |
+
- type: recall_at_5
|
203 |
+
value: 47.329
|
204 |
+
- task:
|
205 |
+
type: PairClassification
|
206 |
+
dataset:
|
207 |
+
type: C-MTEB/CMNLI
|
208 |
+
name: MTEB Cmnli
|
209 |
+
config: default
|
210 |
+
split: validation
|
211 |
+
revision: None
|
212 |
+
metrics:
|
213 |
+
- type: cos_sim_accuracy
|
214 |
+
value: 83.1870114251353
|
215 |
+
- type: cos_sim_ap
|
216 |
+
value: 90.42393852164342
|
217 |
+
- type: cos_sim_f1
|
218 |
+
value: 84.10685985963323
|
219 |
+
- type: cos_sim_precision
|
220 |
+
value: 81.5229317533465
|
221 |
+
- type: cos_sim_recall
|
222 |
+
value: 86.85994856207621
|
223 |
+
- type: dot_accuracy
|
224 |
+
value: 83.1870114251353
|
225 |
+
- type: dot_ap
|
226 |
+
value: 90.41339758845682
|
227 |
+
- type: dot_f1
|
228 |
+
value: 84.10685985963323
|
229 |
+
- type: dot_precision
|
230 |
+
value: 81.5229317533465
|
231 |
+
- type: dot_recall
|
232 |
+
value: 86.85994856207621
|
233 |
+
- type: euclidean_accuracy
|
234 |
+
value: 83.1870114251353
|
235 |
+
- type: euclidean_ap
|
236 |
+
value: 90.42393581056393
|
237 |
+
- type: euclidean_f1
|
238 |
+
value: 84.10685985963323
|
239 |
+
- type: euclidean_precision
|
240 |
+
value: 81.5229317533465
|
241 |
+
- type: euclidean_recall
|
242 |
+
value: 86.85994856207621
|
243 |
+
- type: manhattan_accuracy
|
244 |
+
value: 82.77811184606134
|
245 |
+
- type: manhattan_ap
|
246 |
+
value: 90.18115714681704
|
247 |
+
- type: manhattan_f1
|
248 |
+
value: 83.75083130126357
|
249 |
+
- type: manhattan_precision
|
250 |
+
value: 79.62065331928345
|
251 |
+
- type: manhattan_recall
|
252 |
+
value: 88.33294365209258
|
253 |
+
- type: max_accuracy
|
254 |
+
value: 83.1870114251353
|
255 |
+
- type: max_ap
|
256 |
+
value: 90.42393852164342
|
257 |
+
- type: max_f1
|
258 |
+
value: 84.10685985963323
|
259 |
+
- task:
|
260 |
+
type: Retrieval
|
261 |
+
dataset:
|
262 |
+
type: C-MTEB/CovidRetrieval
|
263 |
+
name: MTEB CovidRetrieval
|
264 |
+
config: default
|
265 |
+
split: dev
|
266 |
+
revision: None
|
267 |
+
metrics:
|
268 |
+
- type: map_at_1
|
269 |
+
value: 68.388
|
270 |
+
- type: map_at_10
|
271 |
+
value: 76.819
|
272 |
+
- type: map_at_100
|
273 |
+
value: 77.153
|
274 |
+
- type: map_at_1000
|
275 |
+
value: 77.16
|
276 |
+
- type: map_at_3
|
277 |
+
value: 74.98700000000001
|
278 |
+
- type: map_at_5
|
279 |
+
value: 76.101
|
280 |
+
- type: mrr_at_1
|
281 |
+
value: 68.599
|
282 |
+
- type: mrr_at_10
|
283 |
+
value: 76.844
|
284 |
+
- type: mrr_at_100
|
285 |
+
value: 77.168
|
286 |
+
- type: mrr_at_1000
|
287 |
+
value: 77.17500000000001
|
288 |
+
- type: mrr_at_3
|
289 |
+
value: 75.044
|
290 |
+
- type: mrr_at_5
|
291 |
+
value: 76.208
|
292 |
+
- type: ndcg_at_1
|
293 |
+
value: 68.599
|
294 |
+
- type: ndcg_at_10
|
295 |
+
value: 80.613
|
296 |
+
- type: ndcg_at_100
|
297 |
+
value: 82.017
|
298 |
+
- type: ndcg_at_1000
|
299 |
+
value: 82.19300000000001
|
300 |
+
- type: ndcg_at_3
|
301 |
+
value: 76.956
|
302 |
+
- type: ndcg_at_5
|
303 |
+
value: 78.962
|
304 |
+
- type: precision_at_1
|
305 |
+
value: 68.599
|
306 |
+
- type: precision_at_10
|
307 |
+
value: 9.336
|
308 |
+
- type: precision_at_100
|
309 |
+
value: 0.996
|
310 |
+
- type: precision_at_1000
|
311 |
+
value: 0.101
|
312 |
+
- type: precision_at_3
|
313 |
+
value: 27.678000000000004
|
314 |
+
- type: precision_at_5
|
315 |
+
value: 17.619
|
316 |
+
- type: recall_at_1
|
317 |
+
value: 68.388
|
318 |
+
- type: recall_at_10
|
319 |
+
value: 92.36
|
320 |
+
- type: recall_at_100
|
321 |
+
value: 98.52499999999999
|
322 |
+
- type: recall_at_1000
|
323 |
+
value: 99.895
|
324 |
+
- type: recall_at_3
|
325 |
+
value: 82.53399999999999
|
326 |
+
- type: recall_at_5
|
327 |
+
value: 87.355
|
328 |
+
- task:
|
329 |
+
type: Retrieval
|
330 |
+
dataset:
|
331 |
+
type: C-MTEB/DuRetrieval
|
332 |
+
name: MTEB DuRetrieval
|
333 |
+
config: default
|
334 |
+
split: dev
|
335 |
+
revision: None
|
336 |
+
metrics:
|
337 |
+
- type: map_at_1
|
338 |
+
value: 25.1
|
339 |
+
- type: map_at_10
|
340 |
+
value: 77.71000000000001
|
341 |
+
- type: map_at_100
|
342 |
+
value: 80.638
|
343 |
+
- type: map_at_1000
|
344 |
+
value: 80.679
|
345 |
+
- type: map_at_3
|
346 |
+
value: 53.187
|
347 |
+
- type: map_at_5
|
348 |
+
value: 67.735
|
349 |
+
- type: mrr_at_1
|
350 |
+
value: 87.8
|
351 |
+
- type: mrr_at_10
|
352 |
+
value: 91.8
|
353 |
+
- type: mrr_at_100
|
354 |
+
value: 91.893
|
355 |
+
- type: mrr_at_1000
|
356 |
+
value: 91.89500000000001
|
357 |
+
- type: mrr_at_3
|
358 |
+
value: 91.51700000000001
|
359 |
+
- type: mrr_at_5
|
360 |
+
value: 91.704
|
361 |
+
- type: ndcg_at_1
|
362 |
+
value: 87.8
|
363 |
+
- type: ndcg_at_10
|
364 |
+
value: 85.55
|
365 |
+
- type: ndcg_at_100
|
366 |
+
value: 88.626
|
367 |
+
- type: ndcg_at_1000
|
368 |
+
value: 89.021
|
369 |
+
- type: ndcg_at_3
|
370 |
+
value: 83.94
|
371 |
+
- type: ndcg_at_5
|
372 |
+
value: 83.259
|
373 |
+
- type: precision_at_1
|
374 |
+
value: 87.8
|
375 |
+
- type: precision_at_10
|
376 |
+
value: 41.295
|
377 |
+
- type: precision_at_100
|
378 |
+
value: 4.781
|
379 |
+
- type: precision_at_1000
|
380 |
+
value: 0.488
|
381 |
+
- type: precision_at_3
|
382 |
+
value: 75.3
|
383 |
+
- type: precision_at_5
|
384 |
+
value: 64.13
|
385 |
+
- type: recall_at_1
|
386 |
+
value: 25.1
|
387 |
+
- type: recall_at_10
|
388 |
+
value: 87.076
|
389 |
+
- type: recall_at_100
|
390 |
+
value: 97.095
|
391 |
+
- type: recall_at_1000
|
392 |
+
value: 99.129
|
393 |
+
- type: recall_at_3
|
394 |
+
value: 56.013999999999996
|
395 |
+
- type: recall_at_5
|
396 |
+
value: 73.2
|
397 |
+
- task:
|
398 |
+
type: Retrieval
|
399 |
+
dataset:
|
400 |
+
type: C-MTEB/EcomRetrieval
|
401 |
+
name: MTEB EcomRetrieval
|
402 |
+
config: default
|
403 |
+
split: dev
|
404 |
+
revision: None
|
405 |
+
metrics:
|
406 |
+
- type: map_at_1
|
407 |
+
value: 53.300000000000004
|
408 |
+
- type: map_at_10
|
409 |
+
value: 63.01
|
410 |
+
- type: map_at_100
|
411 |
+
value: 63.574
|
412 |
+
- type: map_at_1000
|
413 |
+
value: 63.587
|
414 |
+
- type: map_at_3
|
415 |
+
value: 60.783
|
416 |
+
- type: map_at_5
|
417 |
+
value: 62.098
|
418 |
+
- type: mrr_at_1
|
419 |
+
value: 53.300000000000004
|
420 |
+
- type: mrr_at_10
|
421 |
+
value: 63.01
|
422 |
+
- type: mrr_at_100
|
423 |
+
value: 63.574
|
424 |
+
- type: mrr_at_1000
|
425 |
+
value: 63.587
|
426 |
+
- type: mrr_at_3
|
427 |
+
value: 60.783
|
428 |
+
- type: mrr_at_5
|
429 |
+
value: 62.098
|
430 |
+
- type: ndcg_at_1
|
431 |
+
value: 53.300000000000004
|
432 |
+
- type: ndcg_at_10
|
433 |
+
value: 67.876
|
434 |
+
- type: ndcg_at_100
|
435 |
+
value: 70.434
|
436 |
+
- type: ndcg_at_1000
|
437 |
+
value: 70.753
|
438 |
+
- type: ndcg_at_3
|
439 |
+
value: 63.275000000000006
|
440 |
+
- type: ndcg_at_5
|
441 |
+
value: 65.654
|
442 |
+
- type: precision_at_1
|
443 |
+
value: 53.300000000000004
|
444 |
+
- type: precision_at_10
|
445 |
+
value: 8.32
|
446 |
+
- type: precision_at_100
|
447 |
+
value: 0.9480000000000001
|
448 |
+
- type: precision_at_1000
|
449 |
+
value: 0.097
|
450 |
+
- type: precision_at_3
|
451 |
+
value: 23.5
|
452 |
+
- type: precision_at_5
|
453 |
+
value: 15.260000000000002
|
454 |
+
- type: recall_at_1
|
455 |
+
value: 53.300000000000004
|
456 |
+
- type: recall_at_10
|
457 |
+
value: 83.2
|
458 |
+
- type: recall_at_100
|
459 |
+
value: 94.8
|
460 |
+
- type: recall_at_1000
|
461 |
+
value: 97.3
|
462 |
+
- type: recall_at_3
|
463 |
+
value: 70.5
|
464 |
+
- type: recall_at_5
|
465 |
+
value: 76.3
|
466 |
+
- task:
|
467 |
+
type: Classification
|
468 |
+
dataset:
|
469 |
+
type: C-MTEB/IFlyTek-classification
|
470 |
+
name: MTEB IFlyTek
|
471 |
+
config: default
|
472 |
+
split: validation
|
473 |
+
revision: None
|
474 |
+
metrics:
|
475 |
+
- type: accuracy
|
476 |
+
value: 49.92689495959984
|
477 |
+
- type: f1
|
478 |
+
value: 37.784780470986625
|
479 |
+
- task:
|
480 |
+
type: Classification
|
481 |
+
dataset:
|
482 |
+
type: C-MTEB/JDReview-classification
|
483 |
+
name: MTEB JDReview
|
484 |
+
config: default
|
485 |
+
split: test
|
486 |
+
revision: None
|
487 |
+
metrics:
|
488 |
+
- type: accuracy
|
489 |
+
value: 86.26641651031895
|
490 |
+
- type: ap
|
491 |
+
value: 54.50750244841821
|
492 |
+
- type: f1
|
493 |
+
value: 80.94927946681523
|
494 |
+
- task:
|
495 |
+
type: STS
|
496 |
+
dataset:
|
497 |
+
type: C-MTEB/LCQMC
|
498 |
+
name: MTEB LCQMC
|
499 |
+
config: default
|
500 |
+
split: test
|
501 |
+
revision: None
|
502 |
+
metrics:
|
503 |
+
- type: cos_sim_pearson
|
504 |
+
value: 72.3980811478615
|
505 |
+
- type: cos_sim_spearman
|
506 |
+
value: 78.26906056425528
|
507 |
+
- type: euclidean_pearson
|
508 |
+
value: 77.87705501225068
|
509 |
+
- type: euclidean_spearman
|
510 |
+
value: 78.26905834518651
|
511 |
+
- type: manhattan_pearson
|
512 |
+
value: 77.77154630197
|
513 |
+
- type: manhattan_spearman
|
514 |
+
value: 78.1940918602169
|
515 |
+
- task:
|
516 |
+
type: Reranking
|
517 |
+
dataset:
|
518 |
+
type: C-MTEB/Mmarco-reranking
|
519 |
+
name: MTEB MMarcoReranking
|
520 |
+
config: default
|
521 |
+
split: dev
|
522 |
+
revision: None
|
523 |
+
metrics:
|
524 |
+
- type: map
|
525 |
+
value: 27.48003475319453
|
526 |
+
- type: mrr
|
527 |
+
value: 26.400793650793652
|
528 |
+
- task:
|
529 |
+
type: Retrieval
|
530 |
+
dataset:
|
531 |
+
type: C-MTEB/MMarcoRetrieval
|
532 |
+
name: MTEB MMarcoRetrieval
|
533 |
+
config: default
|
534 |
+
split: dev
|
535 |
+
revision: None
|
536 |
+
metrics:
|
537 |
+
- type: map_at_1
|
538 |
+
value: 64.373
|
539 |
+
- type: map_at_10
|
540 |
+
value: 73.604
|
541 |
+
- type: map_at_100
|
542 |
+
value: 73.953
|
543 |
+
- type: map_at_1000
|
544 |
+
value: 73.965
|
545 |
+
- type: map_at_3
|
546 |
+
value: 71.70100000000001
|
547 |
+
- type: map_at_5
|
548 |
+
value: 72.859
|
549 |
+
- type: mrr_at_1
|
550 |
+
value: 66.676
|
551 |
+
- type: mrr_at_10
|
552 |
+
value: 74.248
|
553 |
+
- type: mrr_at_100
|
554 |
+
value: 74.56099999999999
|
555 |
+
- type: mrr_at_1000
|
556 |
+
value: 74.572
|
557 |
+
- type: mrr_at_3
|
558 |
+
value: 72.59100000000001
|
559 |
+
- type: mrr_at_5
|
560 |
+
value: 73.592
|
561 |
+
- type: ndcg_at_1
|
562 |
+
value: 66.676
|
563 |
+
- type: ndcg_at_10
|
564 |
+
value: 77.417
|
565 |
+
- type: ndcg_at_100
|
566 |
+
value: 79.006
|
567 |
+
- type: ndcg_at_1000
|
568 |
+
value: 79.334
|
569 |
+
- type: ndcg_at_3
|
570 |
+
value: 73.787
|
571 |
+
- type: ndcg_at_5
|
572 |
+
value: 75.74
|
573 |
+
- type: precision_at_1
|
574 |
+
value: 66.676
|
575 |
+
- type: precision_at_10
|
576 |
+
value: 9.418
|
577 |
+
- type: precision_at_100
|
578 |
+
value: 1.0210000000000001
|
579 |
+
- type: precision_at_1000
|
580 |
+
value: 0.105
|
581 |
+
- type: precision_at_3
|
582 |
+
value: 27.832
|
583 |
+
- type: precision_at_5
|
584 |
+
value: 17.736
|
585 |
+
- type: recall_at_1
|
586 |
+
value: 64.373
|
587 |
+
- type: recall_at_10
|
588 |
+
value: 88.565
|
589 |
+
- type: recall_at_100
|
590 |
+
value: 95.789
|
591 |
+
- type: recall_at_1000
|
592 |
+
value: 98.355
|
593 |
+
- type: recall_at_3
|
594 |
+
value: 78.914
|
595 |
+
- type: recall_at_5
|
596 |
+
value: 83.56
|
597 |
+
- task:
|
598 |
+
type: Classification
|
599 |
+
dataset:
|
600 |
+
type: mteb/amazon_massive_intent
|
601 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
602 |
+
config: zh-CN
|
603 |
+
split: test
|
604 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
605 |
+
metrics:
|
606 |
+
- type: accuracy
|
607 |
+
value: 72.0544720914593
|
608 |
+
- type: f1
|
609 |
+
value: 69.61749470345791
|
610 |
+
- task:
|
611 |
+
type: Classification
|
612 |
+
dataset:
|
613 |
+
type: mteb/amazon_massive_scenario
|
614 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
615 |
+
config: zh-CN
|
616 |
+
split: test
|
617 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
618 |
+
metrics:
|
619 |
+
- type: accuracy
|
620 |
+
value: 75.30262273032953
|
621 |
+
- type: f1
|
622 |
+
value: 75.05097671215634
|
623 |
+
- task:
|
624 |
+
type: Retrieval
|
625 |
+
dataset:
|
626 |
+
type: C-MTEB/MedicalRetrieval
|
627 |
+
name: MTEB MedicalRetrieval
|
628 |
+
config: default
|
629 |
+
split: dev
|
630 |
+
revision: None
|
631 |
+
metrics:
|
632 |
+
- type: map_at_1
|
633 |
+
value: 55.1
|
634 |
+
- type: map_at_10
|
635 |
+
value: 61.284000000000006
|
636 |
+
- type: map_at_100
|
637 |
+
value: 61.794000000000004
|
638 |
+
- type: map_at_1000
|
639 |
+
value: 61.838
|
640 |
+
- type: map_at_3
|
641 |
+
value: 59.75
|
642 |
+
- type: map_at_5
|
643 |
+
value: 60.64000000000001
|
644 |
+
- type: mrr_at_1
|
645 |
+
value: 55.300000000000004
|
646 |
+
- type: mrr_at_10
|
647 |
+
value: 61.38400000000001
|
648 |
+
- type: mrr_at_100
|
649 |
+
value: 61.894000000000005
|
650 |
+
- type: mrr_at_1000
|
651 |
+
value: 61.938
|
652 |
+
- type: mrr_at_3
|
653 |
+
value: 59.85
|
654 |
+
- type: mrr_at_5
|
655 |
+
value: 60.74
|
656 |
+
- type: ndcg_at_1
|
657 |
+
value: 55.1
|
658 |
+
- type: ndcg_at_10
|
659 |
+
value: 64.345
|
660 |
+
- type: ndcg_at_100
|
661 |
+
value: 67.148
|
662 |
+
- type: ndcg_at_1000
|
663 |
+
value: 68.36
|
664 |
+
- type: ndcg_at_3
|
665 |
+
value: 61.182
|
666 |
+
- type: ndcg_at_5
|
667 |
+
value: 62.808
|
668 |
+
- type: precision_at_1
|
669 |
+
value: 55.1
|
670 |
+
- type: precision_at_10
|
671 |
+
value: 7.3999999999999995
|
672 |
+
- type: precision_at_100
|
673 |
+
value: 0.8789999999999999
|
674 |
+
- type: precision_at_1000
|
675 |
+
value: 0.098
|
676 |
+
- type: precision_at_3
|
677 |
+
value: 21.767
|
678 |
+
- type: precision_at_5
|
679 |
+
value: 13.86
|
680 |
+
- type: recall_at_1
|
681 |
+
value: 55.1
|
682 |
+
- type: recall_at_10
|
683 |
+
value: 74.0
|
684 |
+
- type: recall_at_100
|
685 |
+
value: 87.9
|
686 |
+
- type: recall_at_1000
|
687 |
+
value: 97.5
|
688 |
+
- type: recall_at_3
|
689 |
+
value: 65.3
|
690 |
+
- type: recall_at_5
|
691 |
+
value: 69.3
|
692 |
+
- task:
|
693 |
+
type: Classification
|
694 |
+
dataset:
|
695 |
+
type: C-MTEB/MultilingualSentiment-classification
|
696 |
+
name: MTEB MultilingualSentiment
|
697 |
+
config: default
|
698 |
+
split: validation
|
699 |
+
revision: None
|
700 |
+
metrics:
|
701 |
+
- type: accuracy
|
702 |
+
value: 76.21666666666667
|
703 |
+
- type: f1
|
704 |
+
value: 76.03732395559548
|
705 |
+
- task:
|
706 |
+
type: PairClassification
|
707 |
+
dataset:
|
708 |
+
type: C-MTEB/OCNLI
|
709 |
+
name: MTEB Ocnli
|
710 |
+
config: default
|
711 |
+
split: validation
|
712 |
+
revision: None
|
713 |
+
metrics:
|
714 |
+
- type: cos_sim_accuracy
|
715 |
+
value: 81.8083378451543
|
716 |
+
- type: cos_sim_ap
|
717 |
+
value: 85.43050139514027
|
718 |
+
- type: cos_sim_f1
|
719 |
+
value: 83.25969563082965
|
720 |
+
- type: cos_sim_precision
|
721 |
+
value: 77.79816513761469
|
722 |
+
- type: cos_sim_recall
|
723 |
+
value: 89.54593453009504
|
724 |
+
- type: dot_accuracy
|
725 |
+
value: 81.8083378451543
|
726 |
+
- type: dot_ap
|
727 |
+
value: 85.43050139514027
|
728 |
+
- type: dot_f1
|
729 |
+
value: 83.25969563082965
|
730 |
+
- type: dot_precision
|
731 |
+
value: 77.79816513761469
|
732 |
+
- type: dot_recall
|
733 |
+
value: 89.54593453009504
|
734 |
+
- type: euclidean_accuracy
|
735 |
+
value: 81.8083378451543
|
736 |
+
- type: euclidean_ap
|
737 |
+
value: 85.43050139514027
|
738 |
+
- type: euclidean_f1
|
739 |
+
value: 83.25969563082965
|
740 |
+
- type: euclidean_precision
|
741 |
+
value: 77.79816513761469
|
742 |
+
- type: euclidean_recall
|
743 |
+
value: 89.54593453009504
|
744 |
+
- type: manhattan_accuracy
|
745 |
+
value: 81.53762858689767
|
746 |
+
- type: manhattan_ap
|
747 |
+
value: 84.90556637024838
|
748 |
+
- type: manhattan_f1
|
749 |
+
value: 82.90258449304174
|
750 |
+
- type: manhattan_precision
|
751 |
+
value: 78.30985915492957
|
752 |
+
- type: manhattan_recall
|
753 |
+
value: 88.0675818373812
|
754 |
+
- type: max_accuracy
|
755 |
+
value: 81.8083378451543
|
756 |
+
- type: max_ap
|
757 |
+
value: 85.43050139514027
|
758 |
+
- type: max_f1
|
759 |
+
value: 83.25969563082965
|
760 |
+
- task:
|
761 |
+
type: Classification
|
762 |
+
dataset:
|
763 |
+
type: C-MTEB/OnlineShopping-classification
|
764 |
+
name: MTEB OnlineShopping
|
765 |
+
config: default
|
766 |
+
split: test
|
767 |
+
revision: None
|
768 |
+
metrics:
|
769 |
+
- type: accuracy
|
770 |
+
value: 93.53
|
771 |
+
- type: ap
|
772 |
+
value: 91.62070655043128
|
773 |
+
- type: f1
|
774 |
+
value: 93.51908163199477
|
775 |
+
- task:
|
776 |
+
type: STS
|
777 |
+
dataset:
|
778 |
+
type: C-MTEB/PAWSX
|
779 |
+
name: MTEB PAWSX
|
780 |
+
config: default
|
781 |
+
split: test
|
782 |
+
revision: None
|
783 |
+
metrics:
|
784 |
+
- type: cos_sim_pearson
|
785 |
+
value: 38.451787103814375
|
786 |
+
- type: cos_sim_spearman
|
787 |
+
value: 43.97299462643919
|
788 |
+
- type: euclidean_pearson
|
789 |
+
value: 43.63298716626501
|
790 |
+
- type: euclidean_spearman
|
791 |
+
value: 43.973080252178576
|
792 |
+
- type: manhattan_pearson
|
793 |
+
value: 43.37465277323481
|
794 |
+
- type: manhattan_spearman
|
795 |
+
value: 43.71981281220414
|
796 |
+
- task:
|
797 |
+
type: STS
|
798 |
+
dataset:
|
799 |
+
type: C-MTEB/QBQTC
|
800 |
+
name: MTEB QBQTC
|
801 |
+
config: default
|
802 |
+
split: test
|
803 |
+
revision: None
|
804 |
+
metrics:
|
805 |
+
- type: cos_sim_pearson
|
806 |
+
value: 37.75882451277358
|
807 |
+
- type: cos_sim_spearman
|
808 |
+
value: 40.0244327844802
|
809 |
+
- type: euclidean_pearson
|
810 |
+
value: 38.11050875514246
|
811 |
+
- type: euclidean_spearman
|
812 |
+
value: 40.02440987254504
|
813 |
+
- type: manhattan_pearson
|
814 |
+
value: 38.03186803221696
|
815 |
+
- type: manhattan_spearman
|
816 |
+
value: 39.757452890246775
|
817 |
+
- task:
|
818 |
+
type: STS
|
819 |
+
dataset:
|
820 |
+
type: mteb/sts22-crosslingual-sts
|
821 |
+
name: MTEB STS22 (zh)
|
822 |
+
config: zh
|
823 |
+
split: test
|
824 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
825 |
+
metrics:
|
826 |
+
- type: cos_sim_pearson
|
827 |
+
value: 65.9133992390713
|
828 |
+
- type: cos_sim_spearman
|
829 |
+
value: 66.4894937647578
|
830 |
+
- type: euclidean_pearson
|
831 |
+
value: 66.19047142189935
|
832 |
+
- type: euclidean_spearman
|
833 |
+
value: 66.4894937647578
|
834 |
+
- type: manhattan_pearson
|
835 |
+
value: 66.6960935896136
|
836 |
+
- type: manhattan_spearman
|
837 |
+
value: 66.88179996508133
|
838 |
+
- task:
|
839 |
+
type: STS
|
840 |
+
dataset:
|
841 |
+
type: C-MTEB/STSB
|
842 |
+
name: MTEB STSB
|
843 |
+
config: default
|
844 |
+
split: test
|
845 |
+
revision: None
|
846 |
+
metrics:
|
847 |
+
- type: cos_sim_pearson
|
848 |
+
value: 80.55099417946924
|
849 |
+
- type: cos_sim_spearman
|
850 |
+
value: 83.05000687568048
|
851 |
+
- type: euclidean_pearson
|
852 |
+
value: 82.62744668792926
|
853 |
+
- type: euclidean_spearman
|
854 |
+
value: 83.05000687568048
|
855 |
+
- type: manhattan_pearson
|
856 |
+
value: 82.6543207325763
|
857 |
+
- type: manhattan_spearman
|
858 |
+
value: 83.06852715971705
|
859 |
+
- task:
|
860 |
+
type: Reranking
|
861 |
+
dataset:
|
862 |
+
type: C-MTEB/T2Reranking
|
863 |
+
name: MTEB T2Reranking
|
864 |
+
config: default
|
865 |
+
split: dev
|
866 |
+
revision: None
|
867 |
+
metrics:
|
868 |
+
- type: map
|
869 |
+
value: 66.48634798223672
|
870 |
+
- type: mrr
|
871 |
+
value: 76.30158461488861
|
872 |
+
- task:
|
873 |
+
type: Retrieval
|
874 |
+
dataset:
|
875 |
+
type: C-MTEB/T2Retrieval
|
876 |
+
name: MTEB T2Retrieval
|
877 |
+
config: default
|
878 |
+
split: dev
|
879 |
+
revision: None
|
880 |
+
metrics:
|
881 |
+
- type: map_at_1
|
882 |
+
value: 27.483999999999998
|
883 |
+
- type: map_at_10
|
884 |
+
value: 76.848
|
885 |
+
- type: map_at_100
|
886 |
+
value: 80.541
|
887 |
+
- type: map_at_1000
|
888 |
+
value: 80.607
|
889 |
+
- type: map_at_3
|
890 |
+
value: 54.111
|
891 |
+
- type: map_at_5
|
892 |
+
value: 66.46300000000001
|
893 |
+
- type: mrr_at_1
|
894 |
+
value: 90.045
|
895 |
+
- type: mrr_at_10
|
896 |
+
value: 92.552
|
897 |
+
- type: mrr_at_100
|
898 |
+
value: 92.642
|
899 |
+
- type: mrr_at_1000
|
900 |
+
value: 92.645
|
901 |
+
- type: mrr_at_3
|
902 |
+
value: 92.134
|
903 |
+
- type: mrr_at_5
|
904 |
+
value: 92.391
|
905 |
+
- type: ndcg_at_1
|
906 |
+
value: 90.045
|
907 |
+
- type: ndcg_at_10
|
908 |
+
value: 84.504
|
909 |
+
- type: ndcg_at_100
|
910 |
+
value: 88.23100000000001
|
911 |
+
- type: ndcg_at_1000
|
912 |
+
value: 88.85300000000001
|
913 |
+
- type: ndcg_at_3
|
914 |
+
value: 85.992
|
915 |
+
- type: ndcg_at_5
|
916 |
+
value: 84.548
|
917 |
+
- type: precision_at_1
|
918 |
+
value: 90.045
|
919 |
+
- type: precision_at_10
|
920 |
+
value: 41.91
|
921 |
+
- type: precision_at_100
|
922 |
+
value: 5.017
|
923 |
+
- type: precision_at_1000
|
924 |
+
value: 0.516
|
925 |
+
- type: precision_at_3
|
926 |
+
value: 75.15899999999999
|
927 |
+
- type: precision_at_5
|
928 |
+
value: 62.958000000000006
|
929 |
+
- type: recall_at_1
|
930 |
+
value: 27.483999999999998
|
931 |
+
- type: recall_at_10
|
932 |
+
value: 83.408
|
933 |
+
- type: recall_at_100
|
934 |
+
value: 95.514
|
935 |
+
- type: recall_at_1000
|
936 |
+
value: 98.65
|
937 |
+
- type: recall_at_3
|
938 |
+
value: 55.822
|
939 |
+
- type: recall_at_5
|
940 |
+
value: 69.868
|
941 |
+
- task:
|
942 |
+
type: Classification
|
943 |
+
dataset:
|
944 |
+
type: C-MTEB/TNews-classification
|
945 |
+
name: MTEB TNews
|
946 |
+
config: default
|
947 |
+
split: validation
|
948 |
+
revision: None
|
949 |
+
metrics:
|
950 |
+
- type: accuracy
|
951 |
+
value: 53.196
|
952 |
+
- type: f1
|
953 |
+
value: 51.51679244513836
|
954 |
+
- task:
|
955 |
+
type: Clustering
|
956 |
+
dataset:
|
957 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
958 |
+
name: MTEB ThuNewsClusteringP2P
|
959 |
+
config: default
|
960 |
+
split: test
|
961 |
+
revision: None
|
962 |
+
metrics:
|
963 |
+
- type: v_measure
|
964 |
+
value: 67.87592101539063
|
965 |
+
- task:
|
966 |
+
type: Clustering
|
967 |
+
dataset:
|
968 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
969 |
+
name: MTEB ThuNewsClusteringS2S
|
970 |
+
config: default
|
971 |
+
split: test
|
972 |
+
revision: None
|
973 |
+
metrics:
|
974 |
+
- type: v_measure
|
975 |
+
value: 62.4675464095125
|
976 |
+
- task:
|
977 |
+
type: Retrieval
|
978 |
+
dataset:
|
979 |
+
type: C-MTEB/VideoRetrieval
|
980 |
+
name: MTEB VideoRetrieval
|
981 |
+
config: default
|
982 |
+
split: dev
|
983 |
+
revision: None
|
984 |
+
metrics:
|
985 |
+
- type: map_at_1
|
986 |
+
value: 57.9
|
987 |
+
- type: map_at_10
|
988 |
+
value: 68.099
|
989 |
+
- type: map_at_100
|
990 |
+
value: 68.55499999999999
|
991 |
+
- type: map_at_1000
|
992 |
+
value: 68.566
|
993 |
+
- type: map_at_3
|
994 |
+
value: 66.4
|
995 |
+
- type: map_at_5
|
996 |
+
value: 67.46
|
997 |
+
- type: mrr_at_1
|
998 |
+
value: 57.9
|
999 |
+
- type: mrr_at_10
|
1000 |
+
value: 68.099
|
1001 |
+
- type: mrr_at_100
|
1002 |
+
value: 68.55499999999999
|
1003 |
+
- type: mrr_at_1000
|
1004 |
+
value: 68.566
|
1005 |
+
- type: mrr_at_3
|
1006 |
+
value: 66.4
|
1007 |
+
- type: mrr_at_5
|
1008 |
+
value: 67.46
|
1009 |
+
- type: ndcg_at_1
|
1010 |
+
value: 57.9
|
1011 |
+
- type: ndcg_at_10
|
1012 |
+
value: 72.555
|
1013 |
+
- type: ndcg_at_100
|
1014 |
+
value: 74.715
|
1015 |
+
- type: ndcg_at_1000
|
1016 |
+
value: 75.034
|
1017 |
+
- type: ndcg_at_3
|
1018 |
+
value: 69.102
|
1019 |
+
- type: ndcg_at_5
|
1020 |
+
value: 71.004
|
1021 |
+
- type: precision_at_1
|
1022 |
+
value: 57.9
|
1023 |
+
- type: precision_at_10
|
1024 |
+
value: 8.63
|
1025 |
+
- type: precision_at_100
|
1026 |
+
value: 0.963
|
1027 |
+
- type: precision_at_1000
|
1028 |
+
value: 0.099
|
1029 |
+
- type: precision_at_3
|
1030 |
+
value: 25.633
|
1031 |
+
- type: precision_at_5
|
1032 |
+
value: 16.3
|
1033 |
+
- type: recall_at_1
|
1034 |
+
value: 57.9
|
1035 |
+
- type: recall_at_10
|
1036 |
+
value: 86.3
|
1037 |
+
- type: recall_at_100
|
1038 |
+
value: 96.3
|
1039 |
+
- type: recall_at_1000
|
1040 |
+
value: 98.9
|
1041 |
+
- type: recall_at_3
|
1042 |
+
value: 76.9
|
1043 |
+
- type: recall_at_5
|
1044 |
+
value: 81.5
|
1045 |
+
- task:
|
1046 |
+
type: Classification
|
1047 |
+
dataset:
|
1048 |
+
type: C-MTEB/waimai-classification
|
1049 |
+
name: MTEB Waimai
|
1050 |
+
config: default
|
1051 |
+
split: test
|
1052 |
+
revision: None
|
1053 |
+
metrics:
|
1054 |
+
- type: accuracy
|
1055 |
+
value: 87.27000000000001
|
1056 |
+
- type: ap
|
1057 |
+
value: 71.10883470119464
|
1058 |
+
- type: f1
|
1059 |
+
value: 85.76618863591946
|
1060 |
+
---
|
1061 |
+
|
1062 |
# 1 开源清单
|
1063 |
|
1064 |
本次开源2个通用向量编码模型和一个针对dialogue进行编码的向量模型,同时开源全量160万对话重写数据集和20万的难负例的检索数据集。
|