joydeep bhattacharjee commited on
Commit
1f70867
1 Parent(s): 4ad4026

tamil model with wav2vec2, version1

Browse files
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ta
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: Joydeep Bhattacharjee XLSR Wav2Vec2 Large 53 Tamil
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice ta
21
+ type: common_voice
22
+ args: ta
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 71.29
27
+ ---
28
+ # Wav2Vec2-Large-XLSR-53-Tamil
29
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice).
30
+ When using this model, make sure that your speech input is sampled at 16kHz.
31
+ ## Usage
32
+ The model can be used directly (without a language model) as follows:
33
+ ```python
34
+ import torch
35
+ import torchaudio
36
+ from datasets import load_dataset
37
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
38
+ test_dataset = load_dataset("common_voice", "ta", split="test[:2%]")
39
+ processor = Wav2Vec2Processor.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Tamil")
40
+ model = Wav2Vec2ForCTC.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Tamil")
41
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
42
+ # Preprocessing the datasets.
43
+ # We need to read the aduio files as arrays
44
+ def speech_file_to_array_fn(batch):
45
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
46
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
47
+ return batch
48
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
49
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
50
+ with torch.no_grad():
51
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
52
+ predicted_ids = torch.argmax(logits, dim=-1)
53
+ print("Prediction:", processor.batch_decode(predicted_ids))
54
+ print("Reference:", test_dataset["sentence"][:2])
55
+ ```
56
+ ## Evaluation
57
+ The model can be evaluated as follows on the Tamil test data of Common Voice.
58
+ ```python
59
+ import torch
60
+ import torchaudio
61
+ from datasets import load_dataset, load_metric
62
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
63
+ import re
64
+ test_dataset = load_dataset("common_voice", "ta", split="test")
65
+ wer = load_metric("wer")
66
+ processor = Wav2Vec2Processor.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Tamil")
67
+ model = Wav2Vec2ForCTC.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Tamil")
68
+ model.to("cuda")
69
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\–\(\)]'
70
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
71
+ # Preprocessing the datasets.
72
+ # We need to read the aduio files as arrays
73
+ def speech_file_to_array_fn(batch):
74
+ batch["sentence"] = re.sub('’ ',' ',batch["sentence"])
75
+ batch["sentence"] = re.sub(' ‘',' ',batch["sentence"])
76
+ batch["sentence"] = re.sub('’|‘','\'',batch["sentence"])
77
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
78
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
79
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
80
+ return batch
81
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
82
+ # Preprocessing the datasets.
83
+ # We need to read the aduio files as arrays
84
+ def evaluate(batch):
85
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
86
+ with torch.no_grad():
87
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
88
+ pred_ids = torch.argmax(logits, dim=-1)
89
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
90
+ return batch
91
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
92
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
93
+ ```
94
+ **Test Result**: 71.29 %
95
+ ## Training
96
+ The Common Voice `train` and `validation` datasets were used for training.
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "mean",
39
+ "ctc_zero_infinity": false,
40
+ "do_stable_layer_norm": true,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_dropout": 0.0,
44
+ "feat_extract_norm": "layer",
45
+ "feat_proj_dropout": 0.0,
46
+ "final_dropout": 0.0,
47
+ "gradient_checkpointing": true,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.1,
50
+ "hidden_size": 1024,
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 4096,
53
+ "layer_norm_eps": 1e-05,
54
+ "layerdrop": 0.1,
55
+ "mask_channel_length": 10,
56
+ "mask_channel_min_space": 1,
57
+ "mask_channel_other": 0.0,
58
+ "mask_channel_prob": 0.0,
59
+ "mask_channel_selection": "static",
60
+ "mask_feature_length": 10,
61
+ "mask_feature_prob": 0.0,
62
+ "mask_time_length": 10,
63
+ "mask_time_min_space": 1,
64
+ "mask_time_other": 0.0,
65
+ "mask_time_prob": 0.05,
66
+ "mask_time_selection": "static",
67
+ "model_type": "wav2vec2",
68
+ "num_attention_heads": 16,
69
+ "num_conv_pos_embedding_groups": 16,
70
+ "num_conv_pos_embeddings": 128,
71
+ "num_feat_extract_layers": 7,
72
+ "num_hidden_layers": 24,
73
+ "pad_token_id": 50,
74
+ "transformers_version": "4.4.0",
75
+ "vocab_size": 51
76
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4ea9ced47c99dd2744f2ed058661be1d48ca65cc12c6f2535997ba3ad31f1af
3
+ size 1262142935
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "s"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c3fdf7ebf3069e7df1284e9da820041b7f953fa2d293f73a93de44327ab6b83
3
+ size 2351
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ஔ": 0, "த": 1, "ே": 2, "ச": 3, "ூ": 4, "ஓ": 5, "க": 6, "ஃ": 7, "ள": 8, "ீ": 9, "ன": 10, "ம": 11, "ல": 12, "ை": 13, "ஒ": 14, "ஞ": 15, "ஜ": 16, "ப": 17, "உ": 18, "்": 19, "'": 20, "ழ": 21, "ௌ": 22, "ஹ": 23, "ஸ": 25, "ொ": 26, "ு": 27, "ற": 28, "ய": 29, "அ": 30, "ஆ": 31, "ி": 32, "ந": 33, "ண": 34, "ா": 35, "ஷ": 36, "ஈ": 37, "ட": 38, "வ": 39, "ஏ": 40, "ஐ": 41, "எ": 42, "ங": 43, "ஊ": 44, "ெ": 45, "ர": 46, "ோ": 47, "இ": 48, "s": 24, "[UNK]": 49, "[PAD]": 50}