infinitejoy
commited on
Commit
•
65d8195
1
Parent(s):
0d12d1f
End of training
Browse files- all_results.json +14 -0
- eval.py +137 -0
- eval_results.json +9 -0
- pytorch_model.bin +1 -1
- train_results.json +8 -0
- trainer_state.json +829 -0
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"eval_loss": 0.17219851911067963,
|
4 |
+
"eval_runtime": 164.1427,
|
5 |
+
"eval_samples": 3431,
|
6 |
+
"eval_samples_per_second": 20.903,
|
7 |
+
"eval_steps_per_second": 20.903,
|
8 |
+
"eval_wer": 0.24859002169197397,
|
9 |
+
"train_loss": 1.3891823223876953,
|
10 |
+
"train_runtime": 18203.5679,
|
11 |
+
"train_samples": 7989,
|
12 |
+
"train_samples_per_second": 21.944,
|
13 |
+
"train_steps_per_second": 0.687
|
14 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
8 |
+
|
9 |
+
from transformers import AutoFeatureExtractor, pipeline
|
10 |
+
|
11 |
+
|
12 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
13 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
14 |
+
|
15 |
+
log_outputs = args.log_outputs
|
16 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
17 |
+
|
18 |
+
# load metric
|
19 |
+
wer = load_metric("wer")
|
20 |
+
cer = load_metric("cer")
|
21 |
+
|
22 |
+
# compute metrics
|
23 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
24 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
25 |
+
|
26 |
+
# print & log results
|
27 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
def normalize_text(text: str) -> str:
|
51 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
52 |
+
|
53 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
54 |
+
|
55 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
56 |
+
|
57 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
58 |
+
# note that order is important here!
|
59 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
60 |
+
|
61 |
+
for t in token_sequences_to_ignore:
|
62 |
+
text = " ".join(text.split(t))
|
63 |
+
|
64 |
+
return text
|
65 |
+
|
66 |
+
|
67 |
+
def main(args):
|
68 |
+
# load dataset
|
69 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
70 |
+
|
71 |
+
# for testing: only process the first two examples as a test
|
72 |
+
# dataset = dataset.select(range(10))
|
73 |
+
|
74 |
+
# load processor
|
75 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
76 |
+
sampling_rate = feature_extractor.sampling_rate
|
77 |
+
|
78 |
+
# resample audio
|
79 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
80 |
+
|
81 |
+
# load eval pipeline
|
82 |
+
if args.device is None:
|
83 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
84 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
85 |
+
|
86 |
+
# map function to decode audio
|
87 |
+
def map_to_pred(batch):
|
88 |
+
prediction = asr(
|
89 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
90 |
+
)
|
91 |
+
|
92 |
+
batch["prediction"] = prediction["text"]
|
93 |
+
batch["target"] = normalize_text(batch["sentence"])
|
94 |
+
return batch
|
95 |
+
|
96 |
+
# run inference on all examples
|
97 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
98 |
+
|
99 |
+
# compute and log_results
|
100 |
+
# do not change function below
|
101 |
+
log_results(result, args)
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
parser = argparse.ArgumentParser()
|
106 |
+
|
107 |
+
parser.add_argument(
|
108 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
109 |
+
)
|
110 |
+
parser.add_argument(
|
111 |
+
"--dataset",
|
112 |
+
type=str,
|
113 |
+
required=True,
|
114 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
115 |
+
)
|
116 |
+
parser.add_argument(
|
117 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
118 |
+
)
|
119 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
120 |
+
parser.add_argument(
|
121 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
128 |
+
)
|
129 |
+
parser.add_argument(
|
130 |
+
"--device",
|
131 |
+
type=int,
|
132 |
+
default=None,
|
133 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
134 |
+
)
|
135 |
+
args = parser.parse_args()
|
136 |
+
|
137 |
+
main(args)
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"eval_loss": 0.17219851911067963,
|
4 |
+
"eval_runtime": 164.1427,
|
5 |
+
"eval_samples": 3431,
|
6 |
+
"eval_samples_per_second": 20.903,
|
7 |
+
"eval_steps_per_second": 20.903,
|
8 |
+
"eval_wer": 0.24859002169197397
|
9 |
+
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262091761
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d20bad08b17a254665e11c7ac0712e0d91963613aafcbaed4f5be42438f5800
|
3 |
size 1262091761
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"train_loss": 1.3891823223876953,
|
4 |
+
"train_runtime": 18203.5679,
|
5 |
+
"train_samples": 7989,
|
6 |
+
"train_samples_per_second": 21.944,
|
7 |
+
"train_steps_per_second": 0.687
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,829 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 50.0,
|
5 |
+
"global_step": 12500,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.4,
|
12 |
+
"learning_rate": 3.4299999999999998e-06,
|
13 |
+
"loss": 11.1542,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.8,
|
18 |
+
"learning_rate": 6.93e-06,
|
19 |
+
"loss": 6.4515,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 1.2,
|
24 |
+
"learning_rate": 1.0429999999999998e-05,
|
25 |
+
"loss": 4.2451,
|
26 |
+
"step": 300
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 1.6,
|
30 |
+
"learning_rate": 1.3929999999999999e-05,
|
31 |
+
"loss": 3.7284,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 2.0,
|
36 |
+
"learning_rate": 1.7429999999999997e-05,
|
37 |
+
"loss": 3.4154,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 2.4,
|
42 |
+
"learning_rate": 2.0929999999999998e-05,
|
43 |
+
"loss": 3.2212,
|
44 |
+
"step": 600
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 2.8,
|
48 |
+
"learning_rate": 2.4429999999999995e-05,
|
49 |
+
"loss": 3.1286,
|
50 |
+
"step": 700
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 3.2,
|
54 |
+
"learning_rate": 2.793e-05,
|
55 |
+
"loss": 3.0927,
|
56 |
+
"step": 800
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 3.6,
|
60 |
+
"learning_rate": 3.1429999999999996e-05,
|
61 |
+
"loss": 3.0432,
|
62 |
+
"step": 900
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 4.0,
|
66 |
+
"learning_rate": 3.493e-05,
|
67 |
+
"loss": 3.0182,
|
68 |
+
"step": 1000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 4.4,
|
72 |
+
"learning_rate": 3.843e-05,
|
73 |
+
"loss": 2.9412,
|
74 |
+
"step": 1100
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 4.8,
|
78 |
+
"learning_rate": 4.192999999999999e-05,
|
79 |
+
"loss": 2.8506,
|
80 |
+
"step": 1200
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 5.2,
|
84 |
+
"learning_rate": 4.543e-05,
|
85 |
+
"loss": 2.8052,
|
86 |
+
"step": 1300
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 5.6,
|
90 |
+
"learning_rate": 4.8929999999999994e-05,
|
91 |
+
"loss": 2.7483,
|
92 |
+
"step": 1400
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 6.0,
|
96 |
+
"learning_rate": 5.243e-05,
|
97 |
+
"loss": 2.562,
|
98 |
+
"step": 1500
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 6.4,
|
102 |
+
"learning_rate": 5.593e-05,
|
103 |
+
"loss": 2.1552,
|
104 |
+
"step": 1600
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 6.8,
|
108 |
+
"learning_rate": 5.942999999999999e-05,
|
109 |
+
"loss": 1.94,
|
110 |
+
"step": 1700
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 7.2,
|
114 |
+
"learning_rate": 6.293e-05,
|
115 |
+
"loss": 1.8211,
|
116 |
+
"step": 1800
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 7.6,
|
120 |
+
"learning_rate": 6.642999999999999e-05,
|
121 |
+
"loss": 1.7377,
|
122 |
+
"step": 1900
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 8.0,
|
126 |
+
"learning_rate": 6.992999999999999e-05,
|
127 |
+
"loss": 1.6837,
|
128 |
+
"step": 2000
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 8.0,
|
132 |
+
"eval_loss": 0.6648585200309753,
|
133 |
+
"eval_runtime": 162.4473,
|
134 |
+
"eval_samples_per_second": 21.121,
|
135 |
+
"eval_steps_per_second": 21.121,
|
136 |
+
"eval_wer": 0.7515401301518438,
|
137 |
+
"step": 2000
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 8.4,
|
141 |
+
"learning_rate": 6.934666666666666e-05,
|
142 |
+
"loss": 1.6398,
|
143 |
+
"step": 2100
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 8.8,
|
147 |
+
"learning_rate": 6.867999999999999e-05,
|
148 |
+
"loss": 1.5742,
|
149 |
+
"step": 2200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 9.2,
|
153 |
+
"learning_rate": 6.801333333333332e-05,
|
154 |
+
"loss": 1.5003,
|
155 |
+
"step": 2300
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 9.6,
|
159 |
+
"learning_rate": 6.734666666666666e-05,
|
160 |
+
"loss": 1.4354,
|
161 |
+
"step": 2400
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 10.0,
|
165 |
+
"learning_rate": 6.667999999999999e-05,
|
166 |
+
"loss": 1.3654,
|
167 |
+
"step": 2500
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 10.4,
|
171 |
+
"learning_rate": 6.601333333333333e-05,
|
172 |
+
"loss": 1.3276,
|
173 |
+
"step": 2600
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 10.8,
|
177 |
+
"learning_rate": 6.534666666666666e-05,
|
178 |
+
"loss": 1.278,
|
179 |
+
"step": 2700
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 11.2,
|
183 |
+
"learning_rate": 6.468e-05,
|
184 |
+
"loss": 1.2794,
|
185 |
+
"step": 2800
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 11.6,
|
189 |
+
"learning_rate": 6.401333333333332e-05,
|
190 |
+
"loss": 1.2504,
|
191 |
+
"step": 2900
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 12.0,
|
195 |
+
"learning_rate": 6.334666666666667e-05,
|
196 |
+
"loss": 1.2293,
|
197 |
+
"step": 3000
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 12.4,
|
201 |
+
"learning_rate": 6.268e-05,
|
202 |
+
"loss": 1.2079,
|
203 |
+
"step": 3100
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 12.8,
|
207 |
+
"learning_rate": 6.201333333333332e-05,
|
208 |
+
"loss": 1.1966,
|
209 |
+
"step": 3200
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 13.2,
|
213 |
+
"learning_rate": 6.134666666666666e-05,
|
214 |
+
"loss": 1.1706,
|
215 |
+
"step": 3300
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 13.6,
|
219 |
+
"learning_rate": 6.0679999999999995e-05,
|
220 |
+
"loss": 1.1587,
|
221 |
+
"step": 3400
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 14.0,
|
225 |
+
"learning_rate": 6.0013333333333323e-05,
|
226 |
+
"loss": 1.1514,
|
227 |
+
"step": 3500
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 14.4,
|
231 |
+
"learning_rate": 5.934666666666666e-05,
|
232 |
+
"loss": 1.1437,
|
233 |
+
"step": 3600
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 14.8,
|
237 |
+
"learning_rate": 5.8679999999999994e-05,
|
238 |
+
"loss": 1.137,
|
239 |
+
"step": 3700
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 15.2,
|
243 |
+
"learning_rate": 5.801333333333333e-05,
|
244 |
+
"loss": 1.1301,
|
245 |
+
"step": 3800
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 15.6,
|
249 |
+
"learning_rate": 5.734666666666666e-05,
|
250 |
+
"loss": 1.108,
|
251 |
+
"step": 3900
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 16.0,
|
255 |
+
"learning_rate": 5.668666666666666e-05,
|
256 |
+
"loss": 1.1105,
|
257 |
+
"step": 4000
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 16.0,
|
261 |
+
"eval_loss": 0.23862487077713013,
|
262 |
+
"eval_runtime": 163.3024,
|
263 |
+
"eval_samples_per_second": 21.01,
|
264 |
+
"eval_steps_per_second": 21.01,
|
265 |
+
"eval_wer": 0.3436008676789588,
|
266 |
+
"step": 4000
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 16.4,
|
270 |
+
"learning_rate": 5.6019999999999996e-05,
|
271 |
+
"loss": 1.0962,
|
272 |
+
"step": 4100
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 16.8,
|
276 |
+
"learning_rate": 5.535333333333333e-05,
|
277 |
+
"loss": 1.0979,
|
278 |
+
"step": 4200
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 17.2,
|
282 |
+
"learning_rate": 5.4686666666666666e-05,
|
283 |
+
"loss": 1.0898,
|
284 |
+
"step": 4300
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 17.6,
|
288 |
+
"learning_rate": 5.4019999999999994e-05,
|
289 |
+
"loss": 1.0906,
|
290 |
+
"step": 4400
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 18.0,
|
294 |
+
"learning_rate": 5.335333333333333e-05,
|
295 |
+
"loss": 1.0685,
|
296 |
+
"step": 4500
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 18.4,
|
300 |
+
"learning_rate": 5.2686666666666665e-05,
|
301 |
+
"loss": 1.0622,
|
302 |
+
"step": 4600
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 18.8,
|
306 |
+
"learning_rate": 5.201999999999999e-05,
|
307 |
+
"loss": 1.0662,
|
308 |
+
"step": 4700
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 19.2,
|
312 |
+
"learning_rate": 5.135333333333333e-05,
|
313 |
+
"loss": 1.064,
|
314 |
+
"step": 4800
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 19.6,
|
318 |
+
"learning_rate": 5.0686666666666664e-05,
|
319 |
+
"loss": 1.0674,
|
320 |
+
"step": 4900
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 20.0,
|
324 |
+
"learning_rate": 5.001999999999999e-05,
|
325 |
+
"loss": 1.0565,
|
326 |
+
"step": 5000
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 20.4,
|
330 |
+
"learning_rate": 4.935333333333333e-05,
|
331 |
+
"loss": 1.0284,
|
332 |
+
"step": 5100
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 20.8,
|
336 |
+
"learning_rate": 4.868666666666666e-05,
|
337 |
+
"loss": 1.0432,
|
338 |
+
"step": 5200
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 21.2,
|
342 |
+
"learning_rate": 4.802e-05,
|
343 |
+
"loss": 1.0276,
|
344 |
+
"step": 5300
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 21.6,
|
348 |
+
"learning_rate": 4.7353333333333326e-05,
|
349 |
+
"loss": 1.0301,
|
350 |
+
"step": 5400
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 22.0,
|
354 |
+
"learning_rate": 4.668666666666666e-05,
|
355 |
+
"loss": 1.0273,
|
356 |
+
"step": 5500
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 22.4,
|
360 |
+
"learning_rate": 4.6019999999999996e-05,
|
361 |
+
"loss": 1.0306,
|
362 |
+
"step": 5600
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 22.8,
|
366 |
+
"learning_rate": 4.5353333333333325e-05,
|
367 |
+
"loss": 1.0204,
|
368 |
+
"step": 5700
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 23.2,
|
372 |
+
"learning_rate": 4.468666666666666e-05,
|
373 |
+
"loss": 1.0015,
|
374 |
+
"step": 5800
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 23.6,
|
378 |
+
"learning_rate": 4.4019999999999995e-05,
|
379 |
+
"loss": 1.0053,
|
380 |
+
"step": 5900
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 24.0,
|
384 |
+
"learning_rate": 4.3353333333333324e-05,
|
385 |
+
"loss": 1.0069,
|
386 |
+
"step": 6000
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 24.0,
|
390 |
+
"eval_loss": 0.20076848566532135,
|
391 |
+
"eval_runtime": 163.4066,
|
392 |
+
"eval_samples_per_second": 20.997,
|
393 |
+
"eval_steps_per_second": 20.997,
|
394 |
+
"eval_wer": 0.29683297180043383,
|
395 |
+
"step": 6000
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 24.4,
|
399 |
+
"learning_rate": 4.2686666666666666e-05,
|
400 |
+
"loss": 0.9962,
|
401 |
+
"step": 6100
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 24.8,
|
405 |
+
"learning_rate": 4.202e-05,
|
406 |
+
"loss": 1.0081,
|
407 |
+
"step": 6200
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 25.2,
|
411 |
+
"learning_rate": 4.136e-05,
|
412 |
+
"loss": 1.0055,
|
413 |
+
"step": 6300
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 25.6,
|
417 |
+
"learning_rate": 4.069333333333333e-05,
|
418 |
+
"loss": 0.9909,
|
419 |
+
"step": 6400
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 26.0,
|
423 |
+
"learning_rate": 4.002666666666666e-05,
|
424 |
+
"loss": 0.9936,
|
425 |
+
"step": 6500
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 26.4,
|
429 |
+
"learning_rate": 3.9359999999999996e-05,
|
430 |
+
"loss": 0.9702,
|
431 |
+
"step": 6600
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 26.8,
|
435 |
+
"learning_rate": 3.869333333333333e-05,
|
436 |
+
"loss": 0.9748,
|
437 |
+
"step": 6700
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 27.2,
|
441 |
+
"learning_rate": 3.802666666666666e-05,
|
442 |
+
"loss": 0.9923,
|
443 |
+
"step": 6800
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 27.6,
|
447 |
+
"learning_rate": 3.736666666666667e-05,
|
448 |
+
"loss": 0.976,
|
449 |
+
"step": 6900
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 28.0,
|
453 |
+
"learning_rate": 3.669999999999999e-05,
|
454 |
+
"loss": 0.9792,
|
455 |
+
"step": 7000
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 28.4,
|
459 |
+
"learning_rate": 3.603333333333333e-05,
|
460 |
+
"loss": 0.9667,
|
461 |
+
"step": 7100
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 28.8,
|
465 |
+
"learning_rate": 3.536666666666667e-05,
|
466 |
+
"loss": 0.9686,
|
467 |
+
"step": 7200
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 29.2,
|
471 |
+
"learning_rate": 3.4699999999999996e-05,
|
472 |
+
"loss": 0.9592,
|
473 |
+
"step": 7300
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 29.6,
|
477 |
+
"learning_rate": 3.403333333333333e-05,
|
478 |
+
"loss": 0.9512,
|
479 |
+
"step": 7400
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 30.0,
|
483 |
+
"learning_rate": 3.336666666666667e-05,
|
484 |
+
"loss": 0.9624,
|
485 |
+
"step": 7500
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 30.4,
|
489 |
+
"learning_rate": 3.2699999999999995e-05,
|
490 |
+
"loss": 0.9581,
|
491 |
+
"step": 7600
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 30.8,
|
495 |
+
"learning_rate": 3.203333333333333e-05,
|
496 |
+
"loss": 0.9421,
|
497 |
+
"step": 7700
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 31.2,
|
501 |
+
"learning_rate": 3.1366666666666666e-05,
|
502 |
+
"loss": 0.9468,
|
503 |
+
"step": 7800
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 31.6,
|
507 |
+
"learning_rate": 3.0699999999999994e-05,
|
508 |
+
"loss": 0.9411,
|
509 |
+
"step": 7900
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 32.0,
|
513 |
+
"learning_rate": 3.0033333333333333e-05,
|
514 |
+
"loss": 0.9417,
|
515 |
+
"step": 8000
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 32.0,
|
519 |
+
"eval_loss": 0.19149591028690338,
|
520 |
+
"eval_runtime": 163.3845,
|
521 |
+
"eval_samples_per_second": 21.0,
|
522 |
+
"eval_steps_per_second": 21.0,
|
523 |
+
"eval_wer": 0.2774403470715835,
|
524 |
+
"step": 8000
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 32.4,
|
528 |
+
"learning_rate": 2.9366666666666664e-05,
|
529 |
+
"loss": 0.9303,
|
530 |
+
"step": 8100
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 32.8,
|
534 |
+
"learning_rate": 2.8699999999999996e-05,
|
535 |
+
"loss": 0.9484,
|
536 |
+
"step": 8200
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 33.2,
|
540 |
+
"learning_rate": 2.803333333333333e-05,
|
541 |
+
"loss": 0.93,
|
542 |
+
"step": 8300
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 33.6,
|
546 |
+
"learning_rate": 2.7366666666666663e-05,
|
547 |
+
"loss": 0.9313,
|
548 |
+
"step": 8400
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 34.0,
|
552 |
+
"learning_rate": 2.67e-05,
|
553 |
+
"loss": 0.9365,
|
554 |
+
"step": 8500
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 34.4,
|
558 |
+
"learning_rate": 2.603333333333333e-05,
|
559 |
+
"loss": 0.9266,
|
560 |
+
"step": 8600
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 34.8,
|
564 |
+
"learning_rate": 2.5366666666666662e-05,
|
565 |
+
"loss": 0.9197,
|
566 |
+
"step": 8700
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 35.2,
|
570 |
+
"learning_rate": 2.4699999999999997e-05,
|
571 |
+
"loss": 0.9325,
|
572 |
+
"step": 8800
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 35.6,
|
576 |
+
"learning_rate": 2.403333333333333e-05,
|
577 |
+
"loss": 0.9178,
|
578 |
+
"step": 8900
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 36.0,
|
582 |
+
"learning_rate": 2.3366666666666668e-05,
|
583 |
+
"loss": 0.9107,
|
584 |
+
"step": 9000
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 36.4,
|
588 |
+
"learning_rate": 2.27e-05,
|
589 |
+
"loss": 0.9152,
|
590 |
+
"step": 9100
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 36.8,
|
594 |
+
"learning_rate": 2.203333333333333e-05,
|
595 |
+
"loss": 0.9043,
|
596 |
+
"step": 9200
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 37.2,
|
600 |
+
"learning_rate": 2.1366666666666667e-05,
|
601 |
+
"loss": 0.905,
|
602 |
+
"step": 9300
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 37.6,
|
606 |
+
"learning_rate": 2.07e-05,
|
607 |
+
"loss": 0.9086,
|
608 |
+
"step": 9400
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 38.0,
|
612 |
+
"learning_rate": 2.0033333333333334e-05,
|
613 |
+
"loss": 0.9144,
|
614 |
+
"step": 9500
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 38.4,
|
618 |
+
"learning_rate": 1.9366666666666665e-05,
|
619 |
+
"loss": 0.9043,
|
620 |
+
"step": 9600
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 38.8,
|
624 |
+
"learning_rate": 1.8706666666666665e-05,
|
625 |
+
"loss": 0.895,
|
626 |
+
"step": 9700
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 39.2,
|
630 |
+
"learning_rate": 1.804e-05,
|
631 |
+
"loss": 0.9035,
|
632 |
+
"step": 9800
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 39.6,
|
636 |
+
"learning_rate": 1.7373333333333332e-05,
|
637 |
+
"loss": 0.8993,
|
638 |
+
"step": 9900
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 40.0,
|
642 |
+
"learning_rate": 1.6706666666666664e-05,
|
643 |
+
"loss": 0.887,
|
644 |
+
"step": 10000
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 40.0,
|
648 |
+
"eval_loss": 0.18192386627197266,
|
649 |
+
"eval_runtime": 161.0783,
|
650 |
+
"eval_samples_per_second": 21.3,
|
651 |
+
"eval_steps_per_second": 21.3,
|
652 |
+
"eval_wer": 0.26156182212581347,
|
653 |
+
"step": 10000
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 40.4,
|
657 |
+
"learning_rate": 1.604e-05,
|
658 |
+
"loss": 0.8917,
|
659 |
+
"step": 10100
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 40.8,
|
663 |
+
"learning_rate": 1.5373333333333334e-05,
|
664 |
+
"loss": 0.8863,
|
665 |
+
"step": 10200
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 41.2,
|
669 |
+
"learning_rate": 1.4706666666666664e-05,
|
670 |
+
"loss": 0.8793,
|
671 |
+
"step": 10300
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 41.6,
|
675 |
+
"learning_rate": 1.4039999999999998e-05,
|
676 |
+
"loss": 0.8818,
|
677 |
+
"step": 10400
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 42.0,
|
681 |
+
"learning_rate": 1.3373333333333333e-05,
|
682 |
+
"loss": 0.8873,
|
683 |
+
"step": 10500
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 42.4,
|
687 |
+
"learning_rate": 1.2706666666666666e-05,
|
688 |
+
"loss": 0.8873,
|
689 |
+
"step": 10600
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 42.8,
|
693 |
+
"learning_rate": 1.2039999999999998e-05,
|
694 |
+
"loss": 0.8683,
|
695 |
+
"step": 10700
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 43.2,
|
699 |
+
"learning_rate": 1.1373333333333332e-05,
|
700 |
+
"loss": 0.8815,
|
701 |
+
"step": 10800
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"epoch": 43.6,
|
705 |
+
"learning_rate": 1.0706666666666665e-05,
|
706 |
+
"loss": 0.8715,
|
707 |
+
"step": 10900
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"epoch": 44.0,
|
711 |
+
"learning_rate": 1.0039999999999999e-05,
|
712 |
+
"loss": 0.8732,
|
713 |
+
"step": 11000
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 44.4,
|
717 |
+
"learning_rate": 9.373333333333334e-06,
|
718 |
+
"loss": 0.8836,
|
719 |
+
"step": 11100
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 44.8,
|
723 |
+
"learning_rate": 8.706666666666666e-06,
|
724 |
+
"loss": 0.8609,
|
725 |
+
"step": 11200
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 45.2,
|
729 |
+
"learning_rate": 8.04e-06,
|
730 |
+
"loss": 0.882,
|
731 |
+
"step": 11300
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 45.6,
|
735 |
+
"learning_rate": 7.373333333333333e-06,
|
736 |
+
"loss": 0.8702,
|
737 |
+
"step": 11400
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 46.0,
|
741 |
+
"learning_rate": 6.706666666666665e-06,
|
742 |
+
"loss": 0.8673,
|
743 |
+
"step": 11500
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 46.4,
|
747 |
+
"learning_rate": 6.04e-06,
|
748 |
+
"loss": 0.8638,
|
749 |
+
"step": 11600
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 46.8,
|
753 |
+
"learning_rate": 5.373333333333333e-06,
|
754 |
+
"loss": 0.877,
|
755 |
+
"step": 11700
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 47.2,
|
759 |
+
"learning_rate": 4.706666666666666e-06,
|
760 |
+
"loss": 0.8605,
|
761 |
+
"step": 11800
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 47.6,
|
765 |
+
"learning_rate": 4.0399999999999994e-06,
|
766 |
+
"loss": 0.8472,
|
767 |
+
"step": 11900
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 48.0,
|
771 |
+
"learning_rate": 3.3733333333333334e-06,
|
772 |
+
"loss": 0.8563,
|
773 |
+
"step": 12000
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 48.0,
|
777 |
+
"eval_loss": 0.17289325594902039,
|
778 |
+
"eval_runtime": 164.3624,
|
779 |
+
"eval_samples_per_second": 20.875,
|
780 |
+
"eval_steps_per_second": 20.875,
|
781 |
+
"eval_wer": 0.24754880694143166,
|
782 |
+
"step": 12000
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 48.4,
|
786 |
+
"learning_rate": 2.7066666666666664e-06,
|
787 |
+
"loss": 0.8802,
|
788 |
+
"step": 12100
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 48.8,
|
792 |
+
"learning_rate": 2.04e-06,
|
793 |
+
"loss": 0.8534,
|
794 |
+
"step": 12200
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 49.2,
|
798 |
+
"learning_rate": 1.3733333333333332e-06,
|
799 |
+
"loss": 0.8543,
|
800 |
+
"step": 12300
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 49.6,
|
804 |
+
"learning_rate": 7.066666666666665e-07,
|
805 |
+
"loss": 0.8663,
|
806 |
+
"step": 12400
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 50.0,
|
810 |
+
"learning_rate": 4e-08,
|
811 |
+
"loss": 0.8528,
|
812 |
+
"step": 12500
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 50.0,
|
816 |
+
"step": 12500,
|
817 |
+
"total_flos": 4.84683909774298e+19,
|
818 |
+
"train_loss": 1.3891823223876953,
|
819 |
+
"train_runtime": 18203.5679,
|
820 |
+
"train_samples_per_second": 21.944,
|
821 |
+
"train_steps_per_second": 0.687
|
822 |
+
}
|
823 |
+
],
|
824 |
+
"max_steps": 12500,
|
825 |
+
"num_train_epochs": 50,
|
826 |
+
"total_flos": 4.84683909774298e+19,
|
827 |
+
"trial_name": null,
|
828 |
+
"trial_params": null
|
829 |
+
}
|