inshining commited on
Commit
d2e3297
1 Parent(s): 1677c92

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: bigData_w9
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # bigData_w9
16
+
17
+ This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.0525
20
+ - Bleu4: 0.1309
21
+ - Rouge1: 0.4023
22
+ - Rouge2: 0.1845
23
+ - Rougel: 0.2757
24
+ - Rougelsum: 0.2753
25
+ - Gen Len: 76.4341
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 32
46
+ - eval_batch_size: 32
47
+ - seed: 516
48
+ - gradient_accumulation_steps: 2
49
+ - total_train_batch_size: 64
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Bleu4 | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
58
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:---------:|:-------:|
59
+ | 2.0178 | 0.45 | 100 | 1.4840 | 0.1337 | 0.3875 | 0.1805 | 0.2688 | 0.2689 | 67.5509 |
60
+ | 1.142 | 0.89 | 200 | 1.1196 | 0.1296 | 0.3897 | 0.1766 | 0.2669 | 0.2667 | 69.3817 |
61
+ | 1.0693 | 1.34 | 300 | 1.0796 | 0.1345 | 0.3951 | 0.1818 | 0.2727 | 0.2727 | 70.015 |
62
+ | 1.0536 | 1.78 | 400 | 1.0684 | 0.1284 | 0.399 | 0.1839 | 0.2731 | 0.2729 | 77.3069 |
63
+ | 1.0084 | 2.23 | 500 | 1.0624 | 0.1287 | 0.3977 | 0.1808 | 0.2729 | 0.2729 | 76.7904 |
64
+ | 0.9855 | 2.67 | 600 | 1.0575 | 0.1349 | 0.4005 | 0.1843 | 0.2789 | 0.2787 | 72.4521 |
65
+ | 0.9812 | 3.12 | 700 | 1.0568 | 0.1303 | 0.4009 | 0.1847 | 0.2756 | 0.2752 | 76.1781 |
66
+ | 0.9916 | 3.56 | 800 | 1.0507 | 0.1364 | 0.4014 | 0.1853 | 0.279 | 0.2789 | 72.9746 |
67
+ | 0.9856 | 4.01 | 900 | 1.0507 | 0.1327 | 0.4003 | 0.1833 | 0.276 | 0.2758 | 74.9461 |
68
+ | 0.9747 | 4.45 | 1000 | 1.0519 | 0.1328 | 0.4014 | 0.185 | 0.276 | 0.2757 | 75.9461 |
69
+ | 0.9519 | 4.9 | 1100 | 1.0525 | 0.1309 | 0.4023 | 0.1845 | 0.2757 | 0.2753 | 76.4341 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.29.1
75
+ - Pytorch 2.0.0+cu118
76
+ - Datasets 2.12.0
77
+ - Tokenizers 0.13.3