update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: bigData_w9
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# bigData_w9
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.0525
|
20 |
+
- Bleu4: 0.1309
|
21 |
+
- Rouge1: 0.4023
|
22 |
+
- Rouge2: 0.1845
|
23 |
+
- Rougel: 0.2757
|
24 |
+
- Rougelsum: 0.2753
|
25 |
+
- Gen Len: 76.4341
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 3e-05
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 32
|
47 |
+
- seed: 516
|
48 |
+
- gradient_accumulation_steps: 2
|
49 |
+
- total_train_batch_size: 64
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 5
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu4 | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:---------:|:-------:|
|
59 |
+
| 2.0178 | 0.45 | 100 | 1.4840 | 0.1337 | 0.3875 | 0.1805 | 0.2688 | 0.2689 | 67.5509 |
|
60 |
+
| 1.142 | 0.89 | 200 | 1.1196 | 0.1296 | 0.3897 | 0.1766 | 0.2669 | 0.2667 | 69.3817 |
|
61 |
+
| 1.0693 | 1.34 | 300 | 1.0796 | 0.1345 | 0.3951 | 0.1818 | 0.2727 | 0.2727 | 70.015 |
|
62 |
+
| 1.0536 | 1.78 | 400 | 1.0684 | 0.1284 | 0.399 | 0.1839 | 0.2731 | 0.2729 | 77.3069 |
|
63 |
+
| 1.0084 | 2.23 | 500 | 1.0624 | 0.1287 | 0.3977 | 0.1808 | 0.2729 | 0.2729 | 76.7904 |
|
64 |
+
| 0.9855 | 2.67 | 600 | 1.0575 | 0.1349 | 0.4005 | 0.1843 | 0.2789 | 0.2787 | 72.4521 |
|
65 |
+
| 0.9812 | 3.12 | 700 | 1.0568 | 0.1303 | 0.4009 | 0.1847 | 0.2756 | 0.2752 | 76.1781 |
|
66 |
+
| 0.9916 | 3.56 | 800 | 1.0507 | 0.1364 | 0.4014 | 0.1853 | 0.279 | 0.2789 | 72.9746 |
|
67 |
+
| 0.9856 | 4.01 | 900 | 1.0507 | 0.1327 | 0.4003 | 0.1833 | 0.276 | 0.2758 | 74.9461 |
|
68 |
+
| 0.9747 | 4.45 | 1000 | 1.0519 | 0.1328 | 0.4014 | 0.185 | 0.276 | 0.2757 | 75.9461 |
|
69 |
+
| 0.9519 | 4.9 | 1100 | 1.0525 | 0.1309 | 0.4023 | 0.1845 | 0.2757 | 0.2753 | 76.4341 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.29.1
|
75 |
+
- Pytorch 2.0.0+cu118
|
76 |
+
- Datasets 2.12.0
|
77 |
+
- Tokenizers 0.13.3
|