zulfatmi commited on
Commit
e9be25e
1 Parent(s): 5d15932

Delete README.MD

Browse files
Files changed (1) hide show
  1. README.MD +0 -90
README.MD DELETED
@@ -1,90 +0,0 @@
1
- <h1 align="center"> nach0 </h1>
2
- <h3 align="center"> Multimodal Natural and Chemical Languages Foundation Model </h3>
3
- <p align="center">
4
- 📃 <a href="https://arxiv.org/abs/2311.12410" target="_blank">Paper</a> • ⏬ <a href="https://huggingface.co/insilicomedicine/nach0_base" target="_blank">Base nach0</a> • ⏬ <a href="https://huggingface.co/insilicomedicine/nach0_base" target="_blank">Large nach0</a> <br>
5
- </p>
6
- <div align=center><img src="images/nach0_Pub_2.png" width="70%" height="70%" /></div>
7
- <h2 id="1">Overview</h2>
8
-
9
- - nach0 is a multi-domain and multi-task encoder-decoder LLM pre-trained on unlabeled text from scientific literature, patents, and molecule strings to incorporate a range of chemical and linguistic knowledge.
10
-
11
- - We employed instruction tuning, where specific task-related instructions are utilized to fine-tune nach0 for the final set of tasks. To train nach0 effectively, we leverage the NeMo framework, enabling efficient parallel optimization of both base and large model versions.
12
-
13
- - Extensive experiments demonstrate that our model outperforms state-of-the-art baselines on single-domain and cross-domain tasks. Furthermore, it can generate high-quality outputs in molecular and textual formats, showcasing its effectiveness in multi-domain setups.
14
-
15
- <h2 id="1">Tasks</h2>
16
- Datasets used for training and evaluation. Colour represents the type of tasks. Yellow and blue datasets are single-domain, typically requiring regression/classification losses or generation in the target domain (natural language or SMILES strings). Gradients from yellow to blue represent cross-domain generation tasks that require natural language input and SMILES output, or vise versa.
17
- <div align=center><img src="images/nach0_Pub_1.png" width="70%" height="70%" /></div>
18
-
19
- <h2> Model Usage Guide</h2>
20
-
21
- To use model for the inference follow the steps bellow:
22
-
23
- 1. Preprocess the input by replacing the atom tokens with special tokens.
24
-
25
- ```python
26
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
27
- import re
28
- from rdkit.Chem import MolFromSmiles
29
- import string
30
- from rdkit import RDLogger
31
- RDLogger.DisableLog('rdApp.*')
32
-
33
-
34
- atoms_tokens = ['Ag','Al','As','Au','B','Ba','Bi','Br','C','Ca',
35
- 'Cd','Cl','Co','Cr','Cs','Cu','F','Fe','Ga','Gd',
36
- 'Ge','H','Hg','I','In','K','Li','M','Mg','Mn',
37
- 'Mo','N','Na','O','P','Pt','Ru','S','Sb','Sc',
38
- 'Se','Si','Sn','V','W','Z','Zn','c','e','n','o','p','s']
39
-
40
- atoms_tokens = sorted(atoms_tokens, key=lambda s: len(s), reverse=True)
41
- SMI_REGEX_PATTERN = r"(\[|\]|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9]|" + \
42
- '|'.join(atoms_tokens) + ")"
43
- regex = re.compile(SMI_REGEX_PATTERN)
44
-
45
-
46
- def clean_output_sequence(output_sequence):
47
- return output_sequence.replace('</s>', '').replace('<sm_', '').replace(' sm_', '').replace('>', '').strip()
48
-
49
-
50
- def add_special_symbols(text):
51
- output = []
52
- for word in text.split():
53
- tokens = [token for token in regex.findall(word)]
54
- if len(tokens) > 4 and (word == ''.join(tokens)) and MolFromSmiles(word):
55
- output.append(''.join(['<sm_'+t+'>' for t in tokens]))
56
- else:
57
- output.append(word)
58
- return ' '.join(output)
59
-
60
-
61
- PROMPT = """Given the following reactants and reagents, please provide a possible product.
62
- CCN(CC)CC.CCN=C=NCCCN(C)C.CN(C)C=O.Cl.NC1=CC=C(Cl)C=C1N.O.O=C(O)CCCCCNC(=O)C=C1C2=CC=CC=C2C2=CC=CC=C12.OC1=CC=CC2=C1N=NN2.[Cl-].[Na+]"""
63
- PROMPT = add_special_symbols(PROMPT)
64
- ```
65
- 2. Load the model checkoint
66
-
67
- ```python
68
- model = AutoModelForSeq2SeqLM.from_pretrained('insilicomedicine/nach0_base')
69
- tokenizer = AutoTokenizer.from_pretrained('insilicomedicine/nach0_base')
70
- ```
71
-
72
- 3. Generate response to prompt and replace special tokens with corresponding atom tokens
73
- ```python
74
- input_text_ids = tokenizer(PROMPT, padding="longest", max_length=512, truncation=True, return_tensors="pt")
75
- generated_text_ids = model.generate(**input_text_ids, do_sample=True, top_k=100, top_p=0.95, max_length=512)
76
- generated_text = tokenizer.batch_decode(generated_text_ids, skip_special_tokens=True)[0]
77
- generated_text = clean_output_sequence(generated_text)
78
- ```
79
- ```python
80
- # NC1=CC=C(Cl)C=C1NC(=O)CCCCCNC(=O)C=C1C2=CC=CC=C2C2=CC=CC=C12
81
- ```
82
-
83
-
84
- <h3> References</h3>
85
- If you use our repository, please cite the following related paper:
86
-
87
- ```
88
- @inproceedings{....
89
- }
90
- ```