Text Generation
Transformers
Safetensors
English
llama
finance
text-generation-inference
Inference Endpoints
instruction-pretrain commited on
Commit
1920856
1 Parent(s): e750163

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -3
README.md CHANGED
@@ -1,3 +1,70 @@
1
- ---
2
- license: llama3
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ language:
4
+ - en
5
+ ---
6
+ # Instruction Pre-Training: Language Models are Supervised Multitask Learners
7
+ This repo contains the **finance model developed from Llama3-8B** in our paper **Instruction Pre-Training: Language Models are Supervised Multitask Learners**.
8
+
9
+ We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. **In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.**
10
+
11
+ <p align='center'>
12
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400">
13
+ </p>
14
+
15
+ ## Resources
16
+ **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
17
+
18
+ - Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
19
+ - Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
20
+ - General Models Pre-Trained from Scratch:
21
+ - [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M)
22
+ - [InstructLLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLLM-1.3B)
23
+ - Domain-Specific Models Pre-Trained from Llama3-8B:
24
+ - [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B)
25
+ - [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B)
26
+
27
+
28
+ ## Domain-Adaptive Continued Pre-Training
29
+ Following [AdaptLLM](https://huggingface.co/AdaptLLM/finance-chat), we augment the domain-specific raw corpora with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer).
30
+
31
+ For example, to chat with the finance-Llama3-8B model:
32
+ ```python
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+
35
+ model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/finance-Llama3-8B")
36
+ tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/finance-Llama3-8B")
37
+
38
+ # Put your input here, NO prompt template is required
39
+ user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
40
+ Common Stock, Par Value $.01 Per Share MMM New York Stock Exchange
41
+ MMM Chicago Stock Exchange, Inc.
42
+ 1.500% Notes due 2026 MMM26 New York Stock Exchange
43
+ 1.750% Notes due 2030 MMM30 New York Stock Exchange
44
+ 1.500% Notes due 2031 MMM31 New York Stock Exchange
45
+
46
+ Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
47
+
48
+ inputs = tokenizer(user_input, return_tensors="pt", add_special_tokens=True).input_ids.to(model.device)
49
+ outputs = model.generate(input_ids=inputs, max_new_tokens=400)[0]
50
+
51
+ answer_start = int(inputs.shape[-1])
52
+ pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
53
+
54
+ print(pred)
55
+ ```
56
+
57
+ ## Citation
58
+ If you find our work helpful, please cite us:
59
+
60
+ [AdaptLLM](https://huggingface.co/papers/2309.09530)
61
+ ```bibtex
62
+ @inproceedings{
63
+ cheng2024adapting,
64
+ title={Adapting Large Language Models via Reading Comprehension},
65
+ author={Daixuan Cheng and Shaohan Huang and Furu Wei},
66
+ booktitle={The Twelfth International Conference on Learning Representations},
67
+ year={2024},
68
+ url={https://openreview.net/forum?id=y886UXPEZ0}
69
+ }
70
+ ```