File size: 1,801 Bytes
4a7fdc8
 
 
 
 
 
 
 
2034f51
 
4a7fdc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034f51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: mdeberta-idkmrc
  results: []
datasets:
- rifkiaputri/idk-mrc
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mdeberta-idkmrc

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6436

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.074         | 1.0   | 1167  | 1.0261          |
| 0.7109        | 2.0   | 2334  | 0.8206          |
| 0.5088        | 3.0   | 3501  | 1.0899          |
| 0.3777        | 4.0   | 4668  | 1.0080          |
| 0.2585        | 5.0   | 5835  | 1.2647          |
| 0.2059        | 6.0   | 7002  | 1.4279          |
| 0.176         | 7.0   | 8169  | 1.4197          |
| 0.126         | 8.0   | 9336  | 1.6170          |
| 0.1017        | 9.0   | 10503 | 1.6357          |
| 0.0751        | 10.0  | 11670 | 1.6436          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1