File size: 1,884 Bytes
ea33837
 
18178b9
ea33837
 
 
 
 
 
 
 
 
 
 
 
 
 
18178b9
8357505
1d91bfa
ea33837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37c9b0a
ea33837
 
 
8357505
 
1d91bfa
 
 
 
 
 
 
 
 
ea33837
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: qgyd2021/detr_cppe5_object_detection
tags:
- generated_from_trainer
datasets:
- cppe5
model-index:
- name: detr_cppe5_object_detection
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr_cppe5_object_detection

This model is a fine-tuned version of [qgyd2021/detr_cppe5_object_detection](https://huggingface.co/qgyd2021/detr_cppe5_object_detection) on the cppe5 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0746

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8928        | 3.17  | 200  | 1.0594          |
| 0.8862        | 6.35  | 400  | 1.1216          |
| 0.8231        | 9.52  | 600  | 1.1138          |
| 0.786         | 12.7  | 800  | 1.0857          |
| 0.8132        | 15.87 | 1000 | 1.0550          |
| 0.8111        | 19.05 | 1200 | 1.0563          |
| 0.7927        | 22.22 | 1400 | 1.1003          |
| 0.7805        | 25.4  | 1600 | 1.0950          |
| 0.7332        | 28.57 | 1800 | 1.0746          |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3