File size: 16,390 Bytes
5985c08 aa00681 5985c08 aa00681 5985c08 8a8a3ae 5985c08 8a8a3ae 5985c08 8a8a3ae 5985c08 8a8a3ae 5985c08 8a8a3ae 5985c08 8a8a3ae e782b1f 5985c08 aa00681 8a8a3ae 5985c08 aa00681 5985c08 8a8a3ae 5985c08 b06eb0c 5985c08 b06eb0c 5985c08 aa00681 5985c08 aa00681 5985c08 aa00681 5985c08 aa00681 5985c08 aa00681 5985c08 8a8a3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import copy
import os
import sys
dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.insert(0, dir_path)
import contextlib
import torch.utils.checkpoint
from torch.nn import LayerNorm
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from PIL import Image
from .modeling_perceive_sampler import BertConfig, BertLMHeadModel
from .modeling_vit import *
from .modeling_InternLM import *
from .modeling_utils import *
from transformers.utils import logging
logger = logging.get_logger(__name__)
class InternLMXComposerForCausalLM(PreTrainedModel):
config_class = InternLMXComposerConfig
_auto_class = "AutoModelForCausalLM"
meta_instruction = """meta instruction
You are an AI assistant whose name is 浦语.
- 浦语 is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- 浦语 can understand and communicate fluently in the language chosen by the user such as English and 中文.
conversation
"""
gen_config = dict(
num_beams=5,
do_sample=False,
min_length=1,
repetition_penalty=1.5,
length_penalty=1.0,
temperature=1.0,
max_new_tokens=500,
)
def __init__(self, config):
super().__init__(config)
self.max_length = config.max_length
rank0_print('Init VIT ... ', end='')
self.visual_encoder = create_eva_vit_g()
self.ln_vision = LayerNorm(self.visual_encoder.num_features)
rank0_print('Done')
rank0_print('Init Perceive Sampler ... ', end='')
with all_logging_disabled():
self.Qformer, self.query_tokens = self.init_qformer(
config.num_query_token, self.visual_encoder.num_features)
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.Qformer.cls = None
rank0_print('Done')
rank0_print('Init InternLM ... ', end='')
self.flag_image_start = nn.Parameter(torch.zeros([1, 1, 4096]))
self.flag_image_end = nn.Parameter(torch.zeros([1, 1, 4096]))
self.flag_image_start.requires_grad = False
self.flag_image_end.requires_grad = False
internlm_lora = config.internlm_lora
self.internlm_lora = internlm_lora
setattr(InternLMForCausalLM, 'lora_cfg', internlm_lora)
if int(torch.__version__[0]) == 1:
self.internlm_model = InternLMForCausalLM._from_config(config).to(
torch.float16)
else:
assert int(torch.__version__[0]) == 2
# speed up init llm
with torch.device('meta'):
self.internlm_model = InternLMForCausalLM._from_config(config)
self.internlm_model.to_empty(device=config.device).to(torch.float16)
self.internlm_model.to(config.device)
for n, m in self.internlm_model.named_modules():
if 'lora' in n:
m.float()
self.internlm_proj = nn.Linear(self.Qformer.config.hidden_size,
self.internlm_model.config.hidden_size)
rank0_print('Done')
self.vis_processor = transforms.Compose([
transforms.Resize((224, 224),
interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711)),
])
self.tokenizer = None
self.eoh = '<TOKENS_UNUSED_0>' # end of human
self.eoa = '<TOKENS_UNUSED_1>' # end of assistant
stop_words_ids = [
torch.tensor([103027]).to(config.device),
torch.tensor([103028]).to(config.device),
]
stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)])
self.gen_config['stopping_criteria'] = stopping_criteria
self.supports_gradient_checkpointing = True
def get_input_embeddings(self):
return self.internlm_model.get_input_embeddings()
def _set_gradient_checkpointing(self, module, value=False):
if value:
self.internlm_model.apply(
partial(self.internlm_model._set_gradient_checkpointing,
value=True))
def maybe_autocast(self, dtype=torch.float16):
# if on cpu, don't use autocast
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
enable_autocast = self.device != torch.device("cpu")
if enable_autocast:
return torch.cuda.amp.autocast(dtype=dtype)
else:
return contextlib.nullcontext()
@classmethod
def init_qformer(cls,
num_query_token,
vision_width,
cross_attention_freq=2,
pretrain=True):
encoder_config = BertConfig()
encoder_config.encoder_width = vision_width
# insert cross-attention layer every other block
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = cross_attention_freq
encoder_config.query_length = num_query_token
Qformer = BertLMHeadModel(config=encoder_config)
query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, encoder_config.hidden_size))
query_tokens.data.normal_(mean=0.0,
std=encoder_config.initializer_range)
return Qformer, query_tokens
def encode_img(self, image):
if image is None:
return None
if isinstance(image, str):
image = Image.open(image).convert("RGB")
image = self.vis_processor(image).unsqueeze(0).to(self.device)
else:
assert isinstance(image, torch.Tensor)
device = image.device
with self.maybe_autocast():
image_embeds = self.ln_vision(
self.visual_encoder(image)).to(device)
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1,
-1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_internlm = self.internlm_proj(
query_output.last_hidden_state)
inputs_internlm = torch.cat([
self.flag_image_start.expand(inputs_internlm.shape[0], -1, -1),
inputs_internlm,
self.flag_image_end.expand(inputs_internlm.shape[0], -1, -1)
],
dim=1)
return inputs_internlm
def encode_text(self, text, add_special_tokens=False):
text_token_ids = self.tokenizer(
text,
return_tensors='pt',
add_special_tokens=add_special_tokens,
).input_ids.to(self.device)
text_embeds = self.internlm_model.model.embed_tokens(text_token_ids)
return text_embeds
def decode_text(self, out_embeds):
out_text = self.tokenizer.batch_decode(out_embeds,
skip_special_tokens=True)[0]
out_text = out_text.split(self.eoa)[0]
return out_text
def wrap_text(self, user_text, bot_text='', add_special=True):
if add_special:
eoh = self.eoh
else:
eoh = ''
text = f' <|User|>:{user_text} \n{eoh} <|Bot|>:{bot_text}'
return text
def get_gen_args(self, **kwargs):
new_kargs = copy.deepcopy(self.gen_config)
new_kargs.update(kwargs)
return new_kargs
def generate(self, text, image=None, **kwargs):
text_embeds = self.encode_text(text)
img_embeds = self.encode_img(image)
prompt_embeds = self.wrap_prompt(text_embeds, img_embeds)
out_embeds = self.internlm_model.generate(
inputs_embeds=prompt_embeds, **self.get_gen_args(**kwargs))
out_text = self.decode_text(out_embeds)
return out_text
def chat(self, text, image=None, history=None, **kwargs):
text_embeds = self.encode_text(text)
img_embeds = self.encode_img(image)
prompt_embeds = self.wrap_prompt(text_embeds,
img_embeds,
history=history)
out_embeds = self.internlm_model.generate(
inputs_embeds=prompt_embeds, **self.get_gen_args(**kwargs))
out_text = self.decode_text(out_embeds)
# trunc at eoh and eoa
clean_out_text_token_ids = self.tokenizer(
out_text, return_tensors='pt').input_ids.to(self.device)
clean_out_text_embeds = self.internlm_model.model.embed_tokens(
clean_out_text_token_ids)
clean_prompt_embeds = self.wrap_prompt(text_embeds,
img_embeds,
add_special=False)
cur_history = torch.cat([clean_prompt_embeds, clean_out_text_embeds],
dim=1)
if history is None:
history = []
history.append(cur_history)
return out_text, history
def wrap_prompt(self,
text_embeds,
img_embeds=None,
history=None,
add_special=True):
if add_special:
if history is None:
prompt_segs = [
self.meta_instruction + ' <|User|>:',
f'\n{self.eoh} <|Bot|>:'
]
else:
prompt_segs = [' <|User|>:', f'\n{self.eoh} <|Bot|>:']
else:
prompt_segs = [' <|User|>:', ' <|Bot|>:'] # used in wrap history
prompt_seg_embeds = []
for i, seg in enumerate(prompt_segs):
if history is not None:
add_special_tokens = False
else:
add_special_tokens = i == 0
seg_embeds = self.encode_text(
seg, add_special_tokens=add_special_tokens)
prompt_seg_embeds.append(seg_embeds)
if img_embeds is None:
img_embeds = text_embeds.new_empty(text_embeds.size(0), 0,
text_embeds.size(-1))
prompt_seg_embeds = [
prompt_seg_embeds[0], img_embeds, text_embeds, prompt_seg_embeds[1]
]
prompt_embeds = torch.cat(prompt_seg_embeds, dim=1)
if history is not None:
prompt_embeds = torch.cat([*history, prompt_embeds], dim=1)
return prompt_embeds
######################
# code for training
######################
def prompt_wrap(self, img_embeds, prompt):
batch_size = img_embeds.shape[0]
p_before, p_after = prompt.split('<ImageHere>')
p_before_tokens = self.tokenizer(p_before,
return_tensors="pt",
add_special_tokens=True).to(
img_embeds.device)
p_before_embeds = self.internlm_model.model.embed_tokens(
p_before_tokens.input_ids).expand(batch_size, -1, -1)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
wrapped_atts_img = torch.ones(wrapped_img_embeds.size()[:-1],
dtype=torch.long).to(img_embeds.device)
wrapped_target = torch.ones(
batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
img_embeds.device) * -100
return wrapped_img_embeds, wrapped_atts_img, wrapped_target
def align_text(self, samples, has_img=False): ### add eos and eoa
text_new = []
if has_img: ### remove the first user to wrap image features
text = [
t.replace("<image>", "").split("<|User|>:", 1)[-1].lstrip()
for t in samples["text_input"]
]
else:
text = [t for t in samples["text_input"]]
text = [t + self.eoa + ' </s>' for t in text]
for i in range(len(text)):
temp = text[i]
temp = temp.replace('<|Bot|>', self.eoh + ' <|Bot|>')
temp = temp.replace(' <|User|>', self.eoa + ' <|User|>')
if temp.find(self.eoh) > temp.find(self.eoa):
temp = temp.replace(self.eoa, '', 1)
text_new.append(temp)
return text_new
def text2emb(self, text):
to_regress_tokens = self.tokenizer(text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_length,
add_special_tokens=False).to(
self.device)
targets = self.mask_human_targets(to_regress_tokens.input_ids)
targets = targets.to(self.device)
return to_regress_tokens, targets
def mask_human_targets(self, input_ids, pure=False):
target_batch = []
for bs in range(input_ids.shape[0]):
cur_idx = 0
ids = input_ids[bs]
targets = copy.deepcopy(ids)
last_eoa = 0
last_eoh = 0
for i, temp_id in enumerate(ids):
if temp_id == 103027: #### end of human
targets[cur_idx:i + 6] = -100
cur_idx = i + 6
last_eoh = i
elif temp_id == 103028: ### end of assistant
cur_idx = i + 1
last_eoa = i
elif temp_id == 2: ### eos and following pad
targets[i + 1:] = -100 #### loss on eos, but not on pad
break
if temp_id != 2 and last_eoa > last_eoh: ### trunction, end at last question
targets[last_eoa +
1:] = -100 #### mask all after the last answer
target_batch.append(targets.unsqueeze(0))
target_batch = torch.cat(target_batch, dim=0)
return target_batch
def forward(self,
input_ids=None,
attention_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs):
samples = kwargs.get('samples')
has_img = 'images' in samples.keys()
### encode text
text = self.align_text(samples, has_img=has_img)
to_regress_tokens, targets = self.text2emb(text)
to_regress_embeds = self.internlm_model.model.embed_tokens(
to_regress_tokens.input_ids)
attention_mask = to_regress_tokens.attention_mask
if has_img:
header = samples["text_input"][0].split(' <|User|>:')[0]
prompt = header + ' <|User|>:<ImageHere>'
### encode image
image = samples["image"]
img_embeds = self.encode_img(image)
img_embeds, atts_img, wrapped_target = self.prompt_wrap(
img_embeds, prompt)
### combine text and image
to_regress_embeds = torch.cat([img_embeds, to_regress_embeds],
dim=1)
attention_mask = torch.cat([atts_img, attention_mask], dim=1)
targets = torch.cat([wrapped_target, targets], dim=1)
outputs = self.internlm_model(
inputs_embeds=to_regress_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
return outputs
|