DLight1551 commited on
Commit
3b05b6b
1 Parent(s): 9821357
README.md CHANGED
@@ -1,3 +1,74 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: other
3
+ pipeline_tag: text-generation
4
  ---
5
+
6
+
7
+ <p align="center">
8
+ <img src="logo_en.png" width="400"/>
9
+ <p>
10
+
11
+ <p align="center">
12
+ <b><font size="6">InternLM-XComposer2</font></b>
13
+ <p>
14
+
15
+ <div align="center">
16
+
17
+ [💻Github Repo](https://github.com/InternLM/InternLM-XComposer)
18
+
19
+ [Paper](https://arxiv.org/abs/2401.16420)
20
+
21
+ </div>
22
+
23
+ **InternLM-XComposer2** is a vision-language large model (VLLM) based on [InternLM2](https://github.com/InternLM/InternLM) for advanced text-image comprehension and composition.
24
+
25
+ We release InternLM-XComposer2 series in two versions:
26
+
27
+ - InternLM-XComposer2-VL: The pretrained VLLM model with InternLM2 as the initialization of the LLM, achieving strong performance on various multimodal benchmarks.
28
+ - InternLM-XComposer2: The finetuned VLLM for *Free-from Interleaved Text-Image Composition*.
29
+
30
+ This is the 4-bit version of InternLM-XComposer2-VL, install the latest version of [auto_gptq](https://github.com/AutoGPTQ/AutoGPTQ#quick-installation) before using.
31
+
32
+ ## Quickstart
33
+ We provide a simple example to show how to use InternLM-XComposer with 🤗 Transformers.
34
+ ```python
35
+ import torch, auto_gptq
36
+ from transformers import AutoModel, AutoTokenizer
37
+ from auto_gptq.modeling import BaseGPTQForCausalLM
38
+
39
+ auto_gptq.modeling._base.SUPPORTED_MODELS = ["internlm"]
40
+ torch.set_grad_enabled(False)
41
+
42
+ class InternLMXComposer2QForCausalLM(BaseGPTQForCausalLM):
43
+ layers_block_name = "model.layers"
44
+ outside_layer_modules = [
45
+ 'vit', 'vision_proj', 'model.tok_embeddings', 'model.norm', 'output',
46
+ ]
47
+ inside_layer_modules = [
48
+ ["attention.wqkv.linear"],
49
+ ["attention.wo.linear"],
50
+ ["feed_forward.w1.linear", "feed_forward.w3.linear"],
51
+ ["feed_forward.w2.linear"],
52
+ ]
53
+
54
+ # init model and tokenizer
55
+ model = InternLMXComposer2QForCausalLM.from_quantized(
56
+ 'internlm/internlm-xcomposer2-vl-7b-4bit', trust_remote_code=True, device="cuda:0").eval()
57
+ tokenizer = AutoTokenizer.from_pretrained(
58
+ 'internlm/internlm-xcomposer2-vl-7b-4bit', trust_remote_code=True)
59
+
60
+ text = '<ImageHere>Please describe this image in detail.'
61
+ image = 'examples/image1.webp'
62
+ with torch.cuda.amp.autocast():
63
+ response, _ = model.chat(tokenizer, query=query, image=image, history=[], do_sample=False)
64
+ print(response)
65
+ #The image features a quote by Oscar Wilde, "Live life with no excuses, travel with no regrets."
66
+ #The quote is displayed in white text against a dark background. In the foreground, there are two silhouettes of people standing on a hill at sunset.
67
+ #They appear to be hiking or climbing, as one of them is holding a walking stick.
68
+ #The sky behind them is painted with hues of orange and purple, creating a beautiful contrast with the dark figures.
69
+
70
+ ```
71
+
72
+
73
+ ### Open Source License
74
+ The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact [email protected].
README.md~ ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ pipeline_tag: text-generation
4
+ ---
5
+
6
+
7
+ <p align="center">
8
+ <img src="logo_en.png" width="400"/>
9
+ <p>
10
+
11
+ <p align="center">
12
+ <b><font size="6">InternLM-XComposer2</font></b>
13
+ <p>
14
+
15
+ <div align="center">
16
+
17
+ [💻Github Repo](https://github.com/InternLM/InternLM-XComposer)
18
+
19
+ [Paper](https://arxiv.org/abs/2401.16420)
20
+
21
+ </div>
22
+
23
+ **InternLM-XComposer2** is a vision-language large model (VLLM) based on [InternLM2](https://github.com/InternLM/InternLM) for advanced text-image comprehension and composition.
24
+
25
+ We release InternLM-XComposer2 series in two versions:
26
+
27
+ - InternLM-XComposer2-VL: The pretrained VLLM model with InternLM2 as the initialization of the LLM, achieving strong performance on various multimodal benchmarks.
28
+ - InternLM-XComposer2: The finetuned VLLM for *Free-from Interleaved Text-Image Composition*.
29
+
30
+ This is the 4-bit version of InternLM-XComposer2-VL
31
+
32
+ ## Quickstart
33
+ We provide a simple example to show how to use InternLM-XComposer with 🤗 Transformers.
34
+ ```python
35
+ import torch, auto_gptq
36
+ from transformers import AutoModel, AutoTokenizer
37
+ from auto_gptq.modeling import BaseGPTQForCausalLM
38
+
39
+ auto_gptq.modeling._base.SUPPORTED_MODELS = ["internlm"]
40
+ torch.set_grad_enabled(False)
41
+
42
+ class InternLMXComposer2QForCausalLM(BaseGPTQForCausalLM):
43
+ layers_block_name = "model.layers"
44
+ outside_layer_modules = [
45
+ 'vit', 'vision_proj', 'model.tok_embeddings', 'model.norm', 'output',
46
+ ]
47
+ inside_layer_modules = [
48
+ ["attention.wqkv.linear"],
49
+ ["attention.wo.linear"],
50
+ ["feed_forward.w1.linear", "feed_forward.w3.linear"],
51
+ ["feed_forward.w2.linear"],
52
+ ]
53
+
54
+ # init model and tokenizer
55
+ model = InternLMXComposer2QForCausalLM.from_quantized(
56
+ 'internlm/internlm-xcomposer2-vl-7b-4bit', trust_remote_code=True, device="cuda:0").eval()
57
+ tokenizer = AutoTokenizer.from_pretrained(
58
+ 'internlm/internlm-xcomposer2-vl-7b-4bit', trust_remote_code=True)
59
+
60
+ text = '<ImageHere>Please describe this image in detail.'
61
+ image = 'examples/image1.webp'
62
+ with torch.cuda.amp.autocast():
63
+ response, _ = model.chat(tokenizer, query=query, image=image, history=[], do_sample=False)
64
+ print(response)
65
+ #The image features a quote by Oscar Wilde, "Live life with no excuses, travel with no regrets."
66
+ #The quote is displayed in white text against a dark background. In the foreground, there are two silhouettes of people standing on a hill at sunset.
67
+ #They appear to be hiking or climbing, as one of them is holding a walking stick.
68
+ #The sky behind them is painted with hues of orange and purple, creating a beautiful contrast with the dark figures.
69
+
70
+ ```
71
+
72
+ ### Import from Transformers
73
+ To load the InternLM-XComposer2-VL-7B model using Transformers, use the following code:
74
+ ```python
75
+ import torch
76
+ from PIL import image
77
+ from transformers import AutoTokenizer, AutoModelForCausalLM
78
+ ckpt_path = "internlm/internlm-xcomposer2-vl-7b"
79
+ tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True).cuda()
80
+ # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
81
+ model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
82
+ model = model.eval()
83
+ ```
84
+
85
+ ### 通过 Transformers 加载
86
+ 通过以下的代码加载 InternLM-XComposer2-VL-7B 模型
87
+
88
+ ```python
89
+ import torch
90
+ from transformers import AutoTokenizer, AutoModelForCausalLM
91
+ ckpt_path = "internlm/internlm-xcomposer2-vl-7b"
92
+ tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True).cuda()
93
+ # `torch_dtype=torch.float16` 可以令模型以 float16 精度加载,否则 transformers 会将模型加载为 float32,导致显存不足
94
+ model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
95
+ model = model.eval()
96
+ ```
97
+
98
+ ### Open Source License
99
+ The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact [email protected].
build_mlp.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import re
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from transformers import CLIPVisionModel
7
+
8
+
9
+ def build_vision_tower():
10
+ vision_tower = 'openai/clip-vit-large-patch14-336'
11
+ return CLIPVisionTower(vision_tower)
12
+
13
+
14
+ def build_vision_projector():
15
+ projector_type = 'mlp2x_gelu'
16
+ mm_hidden_size = 1024
17
+ hidden_size = 4096
18
+
19
+ mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
20
+ if mlp_gelu_match:
21
+ mlp_depth = int(mlp_gelu_match.group(1))
22
+ modules = [nn.Linear(mm_hidden_size, hidden_size)]
23
+ for _ in range(1, mlp_depth):
24
+ modules.append(nn.GELU())
25
+ modules.append(nn.Linear(hidden_size, hidden_size))
26
+ return nn.Sequential(*modules)
27
+
28
+ if projector_type == 'identity':
29
+ return IdentityMap()
30
+
31
+ raise ValueError(f'Unknown projector type: {projector_type}')
32
+
33
+
34
+ class IdentityMap(nn.Module):
35
+
36
+ def __init__(self):
37
+ super().__init__()
38
+
39
+ def forward(self, x, *args, **kwargs):
40
+ return x
41
+
42
+ @property
43
+ def config(self):
44
+ return {'mm_projector_type': 'identity'}
45
+
46
+
47
+ class CLIPVisionTower(nn.Module):
48
+
49
+ def __init__(self, vision_tower):
50
+ super().__init__()
51
+
52
+ self.is_loaded = False
53
+ self.is_resize_pos = False
54
+
55
+ self.vision_tower_name = vision_tower
56
+ self.select_layer = -1
57
+ self.select_feature = 'patch'
58
+ self.load_model()
59
+ self.resize_pos()
60
+
61
+ def load_model(self):
62
+ self.vision_tower = CLIPVisionModel.from_pretrained(
63
+ self.vision_tower_name)
64
+ self.vision_tower.requires_grad_(False)
65
+
66
+ self.is_loaded = True
67
+
68
+ def resize_pos(self):
69
+ pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight
70
+ pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0)
71
+ orig_size = 24
72
+ new_size = 35
73
+
74
+ if pos_embed_checkpoint.shape[1] == new_size**2 + 1:
75
+ self.is_resize_pos = True
76
+ else:
77
+ embedding_size = pos_embed_checkpoint.shape[-1]
78
+ num_extra_tokens = 1
79
+ new_num = new_size**2 + num_extra_tokens
80
+ print('Position interpolate from %dx%d to %dx%d' %
81
+ (orig_size, orig_size, new_size, new_size))
82
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
83
+ # only the position tokens are interpolated
84
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
85
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
86
+ embedding_size).permute(
87
+ 0, 3, 1, 2).float()
88
+ pos_tokens = torch.nn.functional.interpolate(
89
+ pos_tokens,
90
+ size=(new_size, new_size),
91
+ mode='bicubic',
92
+ align_corners=False)
93
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2).half()
94
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
95
+
96
+ new_pos_embed = new_pos_embed.squeeze(0)
97
+
98
+ self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding(
99
+ new_num, 1024)
100
+ self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(
101
+ new_pos_embed.to(pos_embed_checkpoint.dtype))
102
+ self.vision_tower.vision_model.embeddings.position_ids = torch.arange(
103
+ new_num).expand((1, -1))
104
+
105
+ self.is_resize_pos = True
106
+
107
+ def feature_select(self, image_forward_outs):
108
+ image_features = image_forward_outs.hidden_states[self.select_layer]
109
+ if self.select_feature == 'patch':
110
+ image_features = image_features[:, 1:]
111
+ elif self.select_feature == 'cls_patch':
112
+ image_features = image_features
113
+ else:
114
+ raise ValueError(
115
+ f'Unexpected select feature: {self.select_feature}')
116
+ return image_features
117
+
118
+ def forward(self, images):
119
+ if not self.is_loaded:
120
+ self.load_model()
121
+ if type(images) is list:
122
+ image_features = []
123
+ for image in images:
124
+ image_forward_out = self.vision_tower(
125
+ image.to(device=self.device,
126
+ dtype=self.dtype).unsqueeze(0),
127
+ output_hidden_states=True)
128
+ image_feature = self.feature_select(image_forward_out).to(
129
+ image.dtype)
130
+ image_features.append(image_feature)
131
+ else:
132
+ image_forward_outs = self.vision_tower(
133
+ images.to(device=self.device, dtype=self.dtype),
134
+ output_hidden_states=True)
135
+ image_features = self.feature_select(image_forward_outs).to(
136
+ images.dtype)
137
+
138
+ return image_features
139
+
140
+ @property
141
+ def dummy_feature(self):
142
+ return torch.zeros(
143
+ 1, self.hidden_size, device=self.device, dtype=self.dtype)
144
+
145
+ @property
146
+ def dtype(self):
147
+ return self.vision_tower.dtype
148
+
149
+ @property
150
+ def device(self):
151
+ return self.vision_tower.device
152
+
153
+ @property
154
+ def config(self):
155
+ if self.is_loaded:
156
+ return self.vision_tower.config
157
+ else:
158
+ return self.cfg_only
159
+
160
+ @property
161
+ def hidden_size(self):
162
+ return self.config.hidden_size
163
+
164
+ @property
165
+ def num_patches(self):
166
+ return (self.config.image_size // self.config.patch_size)**2
167
+
168
+
169
+ class PLoRA(nn.Module):
170
+
171
+ def __init__(self,
172
+ in_features: int,
173
+ out_features: int,
174
+ bias: bool = True,
175
+ device=None,
176
+ dtype=None,
177
+ lora_r=8,
178
+ lora_alpha=16,
179
+ lora_dropout=0.05,
180
+ lora_len=0,
181
+ **kwargs) -> None:
182
+ super().__init__()
183
+ self.lora_r = lora_r
184
+ self.lora_alpha = lora_alpha
185
+ self.lora_len = lora_len
186
+ if lora_dropout > 0.:
187
+ self.lora_dropout = nn.Dropout(p=lora_dropout)
188
+ else:
189
+ self.lora_dropout = lambda x: x
190
+ self.lora_scaling = self.lora_alpha / self.lora_r
191
+
192
+ self.linear = nn.Linear(in_features, out_features, bias=bias, device=device, dtype=dtype)
193
+
194
+ self.Plora_A = nn.Linear(
195
+ in_features, self.lora_r, bias=False, device=device, dtype=dtype)
196
+ self.Plora_B = nn.Linear(
197
+ self.lora_r, out_features, bias=False, device=device, dtype=dtype)
198
+
199
+ self.reset_parameters()
200
+
201
+ def reset_parameters(self):
202
+ if hasattr(self, 'lora_A'):
203
+ # initialize A the same way as the default for nn.Linear and B to zero
204
+ nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
205
+ nn.init.zeros_(self.lora_B.weight)
206
+
207
+ def forward(self, x, im_mask=None):
208
+ res = self.linear(x)
209
+ if im_mask is not None:
210
+ if torch.sum(im_mask) > 0:
211
+ part_x = x[im_mask]
212
+ res[im_mask] += self.Plora_B(
213
+ self.Plora_A(
214
+ self.lora_dropout(part_x))) * self.lora_scaling
215
+ else:
216
+ part_x = x[:, :1]
217
+ res[:, :1] += self.Plora_B(
218
+ self.Plora_A(self.lora_dropout(part_x))) * 0
219
+ return res
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/petrelfs/share_data/dongxiaoyi/int2_quant/internlm-xcomposer2-vl-7b-rerog",
3
+ "architectures": [
4
+ "InternLMXComposer2ForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internlm_xcomposer2.InternLMXcomposer2Config",
8
+ "AutoModel": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM",
9
+ "AutoModelForCausalLM": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM"
10
+ },
11
+ "bias": false,
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 4096,
16
+ "img_size": 490,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_length": 4096,
20
+ "max_position_embeddings": 32768,
21
+ "model_type": "internlm",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 8,
25
+ "pad_token_id": 2,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": {
28
+ "factor": 1.0,
29
+ "type": "dynamic"
30
+ },
31
+ "rope_theta": 1000000,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "float16",
34
+ "transformers_version": "4.33.0",
35
+ "use_cache": false,
36
+ "vocab_size": 92544
37
+ }
configuration_internlm_xcomposer2.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) InternLM. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ InternLM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
+
29
+
30
+ class InternLMXcomposer2Config(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
33
+ an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
34
+ configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`InternLMModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 11008):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ num_key_value_heads (`int`, *optional*):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
59
+ `num_attention_heads`.
60
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
+ The non-linear activation function (function or string) in the decoder.
62
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
63
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
64
+ just in case (e.g., 512 or 1024 or 2048).
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
73
+ Whether to tie weight embeddings
74
+ Example:
75
+
76
+ ```python
77
+ >>> from transformers import InternLMModel, InternLMConfig
78
+
79
+ >>> # Initializing a InternLM internlm-7b style configuration
80
+ >>> configuration = InternLMConfig()
81
+
82
+ >>> # Initializing a model from the internlm-7b style configuration
83
+ >>> model = InternLMModel(configuration)
84
+
85
+ >>> # Accessing the model configuration
86
+ >>> configuration = model.config
87
+ ```"""
88
+ model_type = "internlm"
89
+ _auto_class = "AutoConfig"
90
+
91
+ def __init__( # pylint: disable=W0102
92
+ self,
93
+ vocab_size=103168,
94
+ hidden_size=4096,
95
+ intermediate_size=11008,
96
+ num_hidden_layers=32,
97
+ num_attention_heads=32,
98
+ num_key_value_heads=None,
99
+ hidden_act="silu",
100
+ max_position_embeddings=2048,
101
+ initializer_range=0.02,
102
+ rms_norm_eps=1e-6,
103
+ use_cache=True,
104
+ pad_token_id=0,
105
+ bos_token_id=1,
106
+ eos_token_id=2,
107
+ tie_word_embeddings=False,
108
+ bias=True,
109
+ rope_theta=10000,
110
+ rope_scaling=None,
111
+ **kwargs,
112
+ ):
113
+ self.vocab_size = vocab_size
114
+ self.max_position_embeddings = max_position_embeddings
115
+ self.hidden_size = hidden_size
116
+ self.intermediate_size = intermediate_size
117
+ self.num_hidden_layers = num_hidden_layers
118
+ self.num_attention_heads = num_attention_heads
119
+ self.bias = bias
120
+
121
+ if num_key_value_heads is None:
122
+ num_key_value_heads = num_attention_heads
123
+ self.num_key_value_heads = num_key_value_heads
124
+
125
+ self.hidden_act = hidden_act
126
+ self.initializer_range = initializer_range
127
+ self.rms_norm_eps = rms_norm_eps
128
+ self.use_cache = use_cache
129
+ self.rope_theta = rope_theta
130
+ self.rope_scaling = rope_scaling
131
+ self._rope_scaling_validation()
132
+ super().__init__(
133
+ pad_token_id=pad_token_id,
134
+ bos_token_id=bos_token_id,
135
+ eos_token_id=eos_token_id,
136
+ tie_word_embeddings=tie_word_embeddings,
137
+ **kwargs,
138
+ )
139
+
140
+ def _rope_scaling_validation(self):
141
+ """
142
+ Validate the `rope_scaling` configuration.
143
+ """
144
+ if self.rope_scaling is None:
145
+ return
146
+
147
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
148
+ raise ValueError(
149
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
150
+ f"got {self.rope_scaling}"
151
+ )
152
+ rope_scaling_type = self.rope_scaling.get("type", None)
153
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
154
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
155
+ raise ValueError(
156
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
157
+ )
158
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
159
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "max_length": 1600,
6
+ "pad_token_id": 2,
7
+ "transformers_version": "4.33.0",
8
+ "use_cache": false
9
+ }
gptq_model-4bit-128g.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4682f3253b8b561e198d6d91ed28c445f08a2dd788ab5d75fbcd0e8bb9d6dfc
3
+ size 7007893472
image1.webp ADDED
modeling_internlm2.py ADDED
@@ -0,0 +1,965 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # Copyright (c) InternLM. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """PyTorch InternLM2 model."""
20
+ import math
21
+ import warnings
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from transformers.activations import ACT2FN
29
+ from transformers.modeling_outputs import BaseModelOutputWithPast
30
+ from transformers.modeling_utils import PreTrainedModel
31
+ from transformers.utils import (add_start_docstrings,
32
+ add_start_docstrings_to_model_forward, logging)
33
+
34
+ try:
35
+ from transformers.generation.streamers import BaseStreamer
36
+ except: # noqa # pylint: disable=bare-except
37
+ BaseStreamer = None
38
+
39
+ from .build_mlp import PLoRA
40
+ from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config as InternLM2Config
41
+ logger = logging.get_logger(__name__)
42
+
43
+ _CONFIG_FOR_DOC = 'InternLM2Config'
44
+
45
+
46
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
47
+ def _make_causal_mask(input_ids_shape: torch.Size,
48
+ dtype: torch.dtype,
49
+ device: torch.device,
50
+ past_key_values_length: int = 0):
51
+ """Make causal mask used for bi-directional self-attention."""
52
+ bsz, tgt_len = input_ids_shape
53
+ mask = torch.full((tgt_len, tgt_len),
54
+ torch.tensor(torch.finfo(dtype).min, device=device),
55
+ device=device)
56
+ mask_cond = torch.arange(mask.size(-1), device=device)
57
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
58
+ mask = mask.to(dtype)
59
+
60
+ if past_key_values_length > 0:
61
+ mask = torch.cat([
62
+ torch.zeros(
63
+ tgt_len, past_key_values_length, dtype=dtype, device=device),
64
+ mask
65
+ ],
66
+ dim=-1)
67
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len,
68
+ tgt_len + past_key_values_length)
69
+
70
+
71
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
72
+ def _expand_mask(mask: torch.Tensor,
73
+ dtype: torch.dtype,
74
+ tgt_len: Optional[int] = None):
75
+ """Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len,
76
+ src_seq_len]`."""
77
+ bsz, src_len = mask.size()
78
+ tgt_len = tgt_len if tgt_len is not None else src_len
79
+
80
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len,
81
+ src_len).to(dtype)
82
+
83
+ inverted_mask = 1.0 - expanded_mask
84
+
85
+ return inverted_mask.masked_fill(
86
+ inverted_mask.to(torch.bool),
87
+ torch.finfo(dtype).min)
88
+
89
+
90
+ class InternLM2RMSNorm(nn.Module):
91
+
92
+ def __init__(self, hidden_size, eps=1e-6):
93
+ """InternLM2RMSNorm is equivalent to T5LayerNorm."""
94
+ super().__init__()
95
+ self.weight = nn.Parameter(torch.ones(hidden_size))
96
+ self.variance_epsilon = eps
97
+
98
+ def forward(self, hidden_states):
99
+ input_dtype = hidden_states.dtype
100
+ hidden_states = hidden_states.to(torch.float32)
101
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
102
+ hidden_states = hidden_states * torch.rsqrt(variance +
103
+ self.variance_epsilon)
104
+ return self.weight * hidden_states.to(input_dtype)
105
+
106
+
107
+ class InternLM2RotaryEmbedding(nn.Module):
108
+
109
+ def __init__(self,
110
+ dim,
111
+ max_position_embeddings=2048,
112
+ base=10000,
113
+ device=None):
114
+ super().__init__()
115
+
116
+ self.dim = dim
117
+ self.max_position_embeddings = max_position_embeddings
118
+ self.base = base
119
+ inv_freq = 1.0 / (
120
+ self.base
121
+ **(torch.arange(0, self.dim, 2).float().to(device) / self.dim))
122
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
123
+
124
+ # Build here to make `torch.jit.trace` work.
125
+ self._set_cos_sin_cache(
126
+ seq_len=max_position_embeddings,
127
+ device=self.inv_freq.device,
128
+ dtype=torch.get_default_dtype())
129
+
130
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
131
+ self.max_seq_len_cached = seq_len
132
+ t = torch.arange(
133
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
134
+
135
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
136
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
137
+ emb = torch.cat((freqs, freqs), dim=-1)
138
+ self.register_buffer(
139
+ 'cos_cached', emb.cos().to(dtype), persistent=False)
140
+ self.register_buffer(
141
+ 'sin_cached', emb.sin().to(dtype), persistent=False)
142
+
143
+ def forward(self, x, seq_len=None):
144
+ # x: [bs, num_attention_heads, seq_len, head_size]
145
+ if seq_len > self.max_seq_len_cached:
146
+ self._set_cos_sin_cache(
147
+ seq_len=seq_len, device=x.device, dtype=x.dtype)
148
+
149
+ return (
150
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
151
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
152
+ )
153
+
154
+
155
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
156
+ """InternLM2RotaryEmbedding extended with linear scaling.
157
+
158
+ Credits to the Reddit user /u/kaiokendev
159
+ """
160
+
161
+ def __init__(self,
162
+ dim,
163
+ max_position_embeddings=2048,
164
+ base=10000,
165
+ device=None,
166
+ scaling_factor=1.0):
167
+ self.scaling_factor = scaling_factor
168
+ super().__init__(dim, max_position_embeddings, base, device)
169
+
170
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
171
+ self.max_seq_len_cached = seq_len
172
+ t = torch.arange(
173
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
174
+ t = t / self.scaling_factor
175
+
176
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
177
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
178
+ emb = torch.cat((freqs, freqs), dim=-1)
179
+ self.register_buffer(
180
+ 'cos_cached', emb.cos().to(dtype), persistent=False)
181
+ self.register_buffer(
182
+ 'sin_cached', emb.sin().to(dtype), persistent=False)
183
+
184
+
185
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
186
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
187
+
188
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
189
+ """
190
+
191
+ def __init__(self,
192
+ dim,
193
+ max_position_embeddings=2048,
194
+ base=10000,
195
+ device=None,
196
+ scaling_factor=1.0):
197
+ self.scaling_factor = scaling_factor
198
+ super().__init__(dim, max_position_embeddings, base, device)
199
+
200
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
201
+ self.max_seq_len_cached = seq_len
202
+
203
+ if seq_len > self.max_position_embeddings:
204
+ base = self.base * ((self.scaling_factor * seq_len /
205
+ self.max_position_embeddings) -
206
+ (self.scaling_factor - 1))**(
207
+ self.dim / (self.dim - 2))
208
+ inv_freq = 1.0 / (
209
+ base
210
+ **(torch.arange(0, self.dim, 2).float().to(device) / self.dim))
211
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
212
+
213
+ t = torch.arange(
214
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
215
+
216
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
217
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
218
+ emb = torch.cat((freqs, freqs), dim=-1)
219
+ self.register_buffer(
220
+ 'cos_cached', emb.cos().to(dtype), persistent=False)
221
+ self.register_buffer(
222
+ 'sin_cached', emb.sin().to(dtype), persistent=False)
223
+
224
+
225
+ def rotate_half(x):
226
+ """Rotates half the hidden dims of the input."""
227
+ x1 = x[..., :x.shape[-1] // 2]
228
+ x2 = x[..., x.shape[-1] // 2:]
229
+ return torch.cat((-x2, x1), dim=-1)
230
+
231
+
232
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
233
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
234
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
235
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
236
+ cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
237
+ sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
238
+ if q.size(2) == 1:
239
+ q_embed = (q * cos[:, :, -1:, :]) + (
240
+ rotate_half(q) * sin[:, :, -1:, :])
241
+ else:
242
+ q_embed = (q * cos) + (rotate_half(q) * sin)
243
+
244
+ if k.size(2) == 1:
245
+ k_embed = (k * cos[:, :, -1:, :]) + (
246
+ rotate_half(k) * sin[:, :, -1:, :])
247
+ else:
248
+ k_embed = (k * cos) + (rotate_half(k) * sin)
249
+
250
+ return q_embed, k_embed
251
+
252
+
253
+ class InternLM2MLP(nn.Module):
254
+
255
+ def __init__(self, config):
256
+ super().__init__()
257
+ self.config = config
258
+ self.hidden_size = config.hidden_size
259
+ self.intermediate_size = config.intermediate_size
260
+
261
+ self.w1 = PLoRA(
262
+ self.hidden_size,
263
+ self.intermediate_size,
264
+ bias=False,
265
+ lora_r=256,
266
+ lora_alpha=256,
267
+ lora_len=576)
268
+ self.w3 = PLoRA(
269
+ self.hidden_size,
270
+ self.intermediate_size,
271
+ bias=False,
272
+ lora_r=256,
273
+ lora_alpha=256,
274
+ lora_len=576)
275
+ self.w2 = PLoRA(
276
+ self.intermediate_size,
277
+ self.hidden_size,
278
+ bias=False,
279
+ lora_r=256,
280
+ lora_alpha=256,
281
+ lora_len=576)
282
+
283
+ self.act_fn = ACT2FN[config.hidden_act]
284
+
285
+ def forward(self, x, im_mask):
286
+ down_proj = self.w2(
287
+ self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask)
288
+
289
+ return down_proj
290
+
291
+
292
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
293
+ """This is the equivalent of torch.repeat_interleave(x, dim=1,
294
+ repeats=n_rep).
295
+
296
+ The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
297
+ (batch, num_attention_heads, seqlen, head_dim)
298
+ """
299
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
300
+ if n_rep == 1:
301
+ return hidden_states
302
+ hidden_states = hidden_states[:, :,
303
+ None, :, :].expand(batch,
304
+ num_key_value_heads,
305
+ n_rep, slen, head_dim)
306
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
307
+ head_dim)
308
+
309
+
310
+ class InternLM2Attention(nn.Module):
311
+ """Multi-headed attention from 'Attention Is All You Need' paper."""
312
+
313
+ def __init__(self, config: InternLM2Config):
314
+ super().__init__()
315
+ self.config = config
316
+ self.hidden_size = config.hidden_size
317
+ self.num_heads = config.num_attention_heads
318
+ self.head_dim = self.hidden_size // self.num_heads
319
+ self.num_key_value_heads = config.num_key_value_heads
320
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
321
+ self.max_position_embeddings = config.max_position_embeddings
322
+ self.is_causal = True
323
+
324
+ if (self.head_dim * self.num_heads) != self.hidden_size:
325
+ raise ValueError(
326
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
327
+ f' and `num_heads`: {self.num_heads}).')
328
+
329
+ self.wqkv = PLoRA(
330
+ self.hidden_size,
331
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
332
+ bias=config.bias,
333
+ lora_r=256,
334
+ lora_alpha=256,
335
+ lora_len=576)
336
+
337
+ self.wo = PLoRA(
338
+ self.num_heads * self.head_dim,
339
+ self.hidden_size,
340
+ bias=config.bias,
341
+ lora_r=256,
342
+ lora_alpha=256,
343
+ lora_len=576)
344
+ self._init_rope()
345
+
346
+ def _init_rope(self):
347
+ if self.config.rope_scaling is None:
348
+ self.rotary_emb = InternLM2RotaryEmbedding(
349
+ self.head_dim,
350
+ max_position_embeddings=self.max_position_embeddings,
351
+ base=self.config.rope_theta,
352
+ )
353
+ else:
354
+ scaling_type = self.config.rope_scaling['type']
355
+ scaling_factor = self.config.rope_scaling['factor']
356
+ if scaling_type == 'dynamic':
357
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
358
+ self.head_dim,
359
+ max_position_embeddings=self.max_position_embeddings,
360
+ base=self.config.rope_theta,
361
+ scaling_factor=scaling_factor)
362
+ else:
363
+ raise ValueError(
364
+ "Currently we only support rotary embedding's type being 'dynamic'."
365
+ )
366
+ return self.rotary_emb
367
+
368
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
369
+ return tensor.view(bsz, seq_len, self.num_heads,
370
+ self.head_dim).transpose(1, 2).contiguous()
371
+
372
+ def forward(
373
+ self,
374
+ hidden_states: torch.Tensor,
375
+ attention_mask: Optional[torch.Tensor] = None,
376
+ position_ids: Optional[torch.LongTensor] = None,
377
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
378
+ output_attentions: bool = False,
379
+ use_cache: bool = False,
380
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
381
+ **kwargs,
382
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
383
+ Optional[Tuple[torch.Tensor]]]:
384
+ if 'padding_mask' in kwargs:
385
+ warnings.warn(
386
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
387
+ 'Please make sure use `attention_mask` instead.`')
388
+
389
+ bsz, q_len, _ = hidden_states.size()
390
+
391
+ qkv_states = self.wqkv(hidden_states, im_mask)
392
+
393
+ qkv_states = rearrange(
394
+ qkv_states,
395
+ 'b q (h gs d) -> b q h gs d',
396
+ gs=2 + self.num_key_value_groups,
397
+ d=self.head_dim,
398
+ )
399
+
400
+ query_states = qkv_states[..., :self.num_key_value_groups, :]
401
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
402
+ key_states = qkv_states[..., -2, :]
403
+ value_states = qkv_states[..., -1, :]
404
+
405
+ query_states = query_states.transpose(1, 2)
406
+ key_states = key_states.transpose(1, 2)
407
+ value_states = value_states.transpose(1, 2)
408
+
409
+ kv_seq_len = key_states.shape[-2]
410
+ if past_key_value is not None:
411
+ kv_seq_len += past_key_value[0].shape[-2]
412
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
413
+ query_states, key_states = apply_rotary_pos_emb(
414
+ query_states, key_states, cos, sin, position_ids)
415
+
416
+ if past_key_value is not None:
417
+ # reuse k, v, self_attention
418
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
419
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
420
+
421
+ past_key_value = (key_states, value_states) if use_cache else None
422
+
423
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
424
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
425
+
426
+ attn_weights = torch.matmul(query_states, key_states.transpose(
427
+ 2, 3)) / math.sqrt(self.head_dim)
428
+
429
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
430
+ raise ValueError(
431
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
432
+ f' {attn_weights.size()}')
433
+
434
+ if attention_mask is not None:
435
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
436
+ raise ValueError(
437
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
438
+ )
439
+ attn_weights = attn_weights + attention_mask
440
+
441
+ # upcast attention to fp32
442
+ attn_weights = nn.functional.softmax(
443
+ attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
444
+ attn_output = torch.matmul(attn_weights, value_states)
445
+
446
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
447
+ raise ValueError(
448
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
449
+ f' {attn_output.size()}')
450
+
451
+ attn_output = attn_output.transpose(1, 2).contiguous()
452
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
453
+
454
+ attn_output = self.wo(attn_output, im_mask)
455
+
456
+ if not output_attentions:
457
+ attn_weights = None
458
+
459
+ return attn_output, attn_weights, past_key_value
460
+
461
+
462
+ class InternLM2FlashAttention2(InternLM2Attention):
463
+ """InternLM2 flash attention module.
464
+
465
+ This module inherits from `InternLM2Attention` as the weights of the module
466
+ stays untouched. The only required change would be on the forward pass
467
+ where it needs to correctly call the public API of flash attention and deal
468
+ with padding tokens in case the input contains any of them.
469
+ """
470
+
471
+ def forward(
472
+ self,
473
+ hidden_states: torch.Tensor,
474
+ attention_mask: Optional[torch.LongTensor] = None,
475
+ position_ids: Optional[torch.LongTensor] = None,
476
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
477
+ output_attentions: bool = False,
478
+ use_cache: bool = False,
479
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
480
+ **kwargs,
481
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
482
+ Optional[Tuple[torch.Tensor]]]:
483
+ # InternLM2FlashAttention2 attention does not support output_attentions
484
+ if 'padding_mask' in kwargs:
485
+ warnings.warn(
486
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
487
+ 'Please make sure use `attention_mask` instead.`')
488
+
489
+ # overwrite attention_mask with padding_mask
490
+ attention_mask = kwargs.pop('padding_mask')
491
+
492
+ output_attentions = False
493
+
494
+ bsz, q_len, _ = hidden_states.size()
495
+
496
+ qkv_states = self.wqkv(hidden_states, im_mask)
497
+
498
+ qkv_states = rearrange(
499
+ qkv_states,
500
+ 'b q (h gs d) -> b q h gs d',
501
+ gs=self.num_heads + 2 * self.num_key_value_heads,
502
+ d=self.head_dim,
503
+ q=q_len,
504
+ )
505
+
506
+ query_states = qkv_states[..., :self.num_key_value_groups, :]
507
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
508
+ key_states = qkv_states[..., -2, :]
509
+ value_states = qkv_states[..., -1, :]
510
+
511
+ kv_seq_len = key_states.shape[-2]
512
+ if past_key_value is not None:
513
+ kv_seq_len += past_key_value[0].shape[-2]
514
+
515
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
516
+
517
+ query_states, key_states = apply_rotary_pos_emb(
518
+ query_states, key_states, cos, sin, position_ids)
519
+
520
+ if past_key_value is not None:
521
+ # reuse k, v, self_attention
522
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
523
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
524
+
525
+ past_key_value = (key_states, value_states) if use_cache else None
526
+
527
+ query_states = query_states.transpose(1, 2)
528
+ key_states = key_states.transpose(1, 2)
529
+ value_states = value_states.transpose(1, 2)
530
+
531
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
532
+
533
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
534
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
535
+ # cast them back in the correct dtype just to be sure everything works as expected.
536
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
537
+ # in fp32. (InternLM2RMSNorm handles it correctly)
538
+
539
+ input_dtype = query_states.dtype
540
+ if input_dtype == torch.float32:
541
+ # Handle the case where the model is quantized
542
+ if hasattr(self.config, '_pre_quantization_dtype'):
543
+ target_dtype = self.config._pre_quantization_dtype
544
+ else:
545
+ target_dtype = self.q_proj.weight.dtype
546
+
547
+ logger.warning_once(
548
+ f'The input hidden states seems to be silently casted in float32, this might be related to'
549
+ f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back '
550
+ f'the input in {target_dtype}.')
551
+
552
+ query_states = query_states.to(target_dtype)
553
+ key_states = key_states.to(target_dtype)
554
+ value_states = value_states.to(target_dtype)
555
+
556
+ attn_output = self._flash_attention_forward(
557
+ query_states,
558
+ key_states,
559
+ value_states,
560
+ attention_mask,
561
+ q_len,
562
+ dropout=dropout_rate)
563
+
564
+ attn_output = attn_output.reshape(bsz, q_len,
565
+ self.hidden_size).contiguous()
566
+ attn_output = self.wo(attn_output, im_mask)
567
+
568
+ if not output_attentions:
569
+ attn_weights = None
570
+
571
+ return attn_output, attn_weights, past_key_value
572
+
573
+
574
+ class InternLM2DecoderLayer(nn.Module):
575
+
576
+ def __init__(self, config: InternLM2Config):
577
+ super().__init__()
578
+ self.hidden_size = config.hidden_size
579
+ self.attention = (
580
+ InternLM2Attention(config=config)
581
+ if not getattr(config, '_flash_attn_2_enabled', False) else
582
+ InternLM2FlashAttention2(config=config))
583
+ self.feed_forward = InternLM2MLP(config)
584
+ self.attention_norm = InternLM2RMSNorm(
585
+ config.hidden_size, eps=config.rms_norm_eps)
586
+ self.ffn_norm = InternLM2RMSNorm(
587
+ config.hidden_size, eps=config.rms_norm_eps)
588
+
589
+ def forward(
590
+ self,
591
+ hidden_states: torch.Tensor,
592
+ attention_mask: Optional[torch.Tensor] = None,
593
+ position_ids: Optional[torch.LongTensor] = None,
594
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
595
+ output_attentions: Optional[bool] = False,
596
+ use_cache: Optional[bool] = False,
597
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
598
+ **kwargs,
599
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
600
+ torch.FloatTensor]]]:
601
+ """
602
+ Args:
603
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
604
+ attention_mask (`torch.FloatTensor`, *optional*):
605
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
606
+ query_sequence_length, key_sequence_length)` if default attention is used.
607
+ output_attentions (`bool`, *optional*):
608
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
609
+ returned tensors for more detail.
610
+ use_cache (`bool`, *optional*):
611
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
612
+ (see `past_key_values`).
613
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
614
+ """
615
+ if 'padding_mask' in kwargs:
616
+ warnings.warn(
617
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
618
+ 'Please make sure use `attention_mask` instead.`')
619
+
620
+ residual = hidden_states
621
+
622
+ hidden_states = self.attention_norm(hidden_states)
623
+
624
+ # Self Attention
625
+ hidden_states, self_attn_weights, present_key_value = self.attention(
626
+ hidden_states=hidden_states,
627
+ attention_mask=attention_mask,
628
+ position_ids=position_ids,
629
+ past_key_value=past_key_value,
630
+ output_attentions=output_attentions,
631
+ use_cache=use_cache,
632
+ im_mask=im_mask,
633
+ **kwargs,
634
+ )
635
+ hidden_states = residual + hidden_states
636
+
637
+ # Fully Connected
638
+ residual = hidden_states
639
+ hidden_states = self.ffn_norm(hidden_states)
640
+ hidden_states = self.feed_forward(hidden_states, im_mask)
641
+ hidden_states = residual + hidden_states
642
+
643
+ outputs = (hidden_states, )
644
+
645
+ if output_attentions:
646
+ outputs += (self_attn_weights, )
647
+
648
+ if use_cache:
649
+ outputs += (present_key_value, )
650
+
651
+ return outputs
652
+
653
+
654
+ InternLM2_START_DOCSTRING = r"""
655
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
656
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
657
+ etc.)
658
+
659
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
660
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
661
+ and behavior.
662
+
663
+ Parameters:
664
+ config ([`InternLM2Config`]):
665
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
666
+ load the weights associated with the model, only the configuration. Check out the
667
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
668
+ """
669
+
670
+
671
+ @add_start_docstrings(
672
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
673
+ InternLM2_START_DOCSTRING,
674
+ )
675
+ class InternLM2PreTrainedModel(PreTrainedModel):
676
+ config_class = InternLM2Config
677
+ base_model_prefix = 'model'
678
+ supports_gradient_checkpointing = True
679
+ _no_split_modules = ['InternLM2DecoderLayer']
680
+ _skip_keys_device_placement = 'past_key_values'
681
+ _supports_flash_attn_2 = True
682
+
683
+ def _init_weights(self, module):
684
+ std = self.config.initializer_range
685
+ if isinstance(module, nn.Linear):
686
+ module.weight.data.normal_(mean=0.0, std=std)
687
+ if module.bias is not None:
688
+ module.bias.data.zero_()
689
+ elif isinstance(module, nn.Embedding):
690
+ module.weight.data.normal_(mean=0.0, std=std)
691
+ if module.padding_idx is not None:
692
+ module.weight.data[module.padding_idx].zero_()
693
+
694
+
695
+ InternLM2_INPUTS_DOCSTRING = r"""
696
+ Args:
697
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
698
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
699
+ it.
700
+
701
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
702
+ [`PreTrainedTokenizer.__call__`] for details.
703
+
704
+ [What are input IDs?](../glossary#input-ids)
705
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
706
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
707
+
708
+ - 1 for tokens that are **not masked**,
709
+ - 0 for tokens that are **masked**.
710
+
711
+ [What are attention masks?](../glossary#attention-mask)
712
+
713
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
714
+ [`PreTrainedTokenizer.__call__`] for details.
715
+
716
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
717
+ `past_key_values`).
718
+
719
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
720
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
721
+ information on the default strategy.
722
+
723
+ - 1 indicates the head is **not masked**,
724
+ - 0 indicates the head is **masked**.
725
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
726
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
727
+ config.n_positions - 1]`.
728
+
729
+ [What are position IDs?](../glossary#position-ids)
730
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
731
+ when `config.use_cache=True`):
732
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
733
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
734
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
735
+
736
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
737
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
738
+
739
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
740
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
741
+ of shape `(batch_size, sequence_length)`.
742
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
743
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
744
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
745
+ model's internal embedding lookup matrix.
746
+ use_cache (`bool`, *optional*):
747
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
748
+ `past_key_values`).
749
+ output_attentions (`bool`, *optional*):
750
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
751
+ tensors for more detail.
752
+ output_hidden_states (`bool`, *optional*):
753
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
754
+ more detail.
755
+ return_dict (`bool`, *optional*):
756
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
757
+ """
758
+
759
+
760
+ @add_start_docstrings(
761
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
762
+ InternLM2_START_DOCSTRING,
763
+ )
764
+ class InternLM2Model(InternLM2PreTrainedModel):
765
+ """Transformer decoder consisting of *config.num_hidden_layers* layers.
766
+ Each layer is a [`InternLM2DecoderLayer`]
767
+
768
+ Args:
769
+ config: InternLM2Config
770
+ """
771
+
772
+ _auto_class = 'AutoModel'
773
+
774
+ def __init__(self, config: InternLM2Config):
775
+ super().__init__(config)
776
+ self.padding_idx = config.pad_token_id
777
+ self.vocab_size = config.vocab_size
778
+
779
+ self.tok_embeddings = nn.Embedding(config.vocab_size,
780
+ config.hidden_size,
781
+ self.padding_idx)
782
+ self.layers = nn.ModuleList([
783
+ InternLM2DecoderLayer(config)
784
+ for _ in range(config.num_hidden_layers)
785
+ ])
786
+ self.norm = InternLM2RMSNorm(
787
+ config.hidden_size, eps=config.rms_norm_eps)
788
+
789
+ self.gradient_checkpointing = False
790
+ # Initialize weights and apply final processing
791
+ self.post_init()
792
+
793
+ def get_input_embeddings(self):
794
+ return self.tok_embeddings
795
+
796
+ def set_input_embeddings(self, value):
797
+ self.tok_embeddings = value
798
+
799
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
800
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
801
+ inputs_embeds, past_key_values_length):
802
+ # create causal mask
803
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
804
+ combined_attention_mask = None
805
+ if input_shape[-1] > 1:
806
+ combined_attention_mask = _make_causal_mask(
807
+ input_shape,
808
+ inputs_embeds.dtype,
809
+ device=inputs_embeds.device,
810
+ past_key_values_length=past_key_values_length,
811
+ )
812
+
813
+ if attention_mask is not None:
814
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
815
+ expanded_attn_mask = _expand_mask(
816
+ attention_mask, inputs_embeds.dtype,
817
+ tgt_len=input_shape[-1]).to(inputs_embeds.device)
818
+ combined_attention_mask = (
819
+ expanded_attn_mask if combined_attention_mask is None else
820
+ expanded_attn_mask + combined_attention_mask)
821
+
822
+ return combined_attention_mask
823
+
824
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
825
+ def forward(self,
826
+ input_ids: torch.LongTensor = None,
827
+ attention_mask: Optional[torch.Tensor] = None,
828
+ position_ids: Optional[torch.LongTensor] = None,
829
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
830
+ inputs_embeds: Optional[torch.FloatTensor] = None,
831
+ use_cache: Optional[bool] = None,
832
+ output_attentions: Optional[bool] = None,
833
+ output_hidden_states: Optional[bool] = None,
834
+ return_dict: Optional[bool] = None,
835
+ **kwargs) -> Union[Tuple, BaseModelOutputWithPast]:
836
+
837
+ im_mask = kwargs.get('im_mask', None)
838
+
839
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
840
+ output_hidden_states = (
841
+ output_hidden_states if output_hidden_states is not None else
842
+ self.config.output_hidden_states)
843
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
844
+
845
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
846
+
847
+ # retrieve input_ids and inputs_embeds
848
+ if input_ids is not None and inputs_embeds is not None:
849
+ raise ValueError(
850
+ 'You cannot specify both input_ids and inputs_embeds at the same time'
851
+ )
852
+ elif input_ids is not None:
853
+ batch_size, seq_length = input_ids.shape[:2]
854
+ elif inputs_embeds is not None:
855
+ batch_size, seq_length = inputs_embeds.shape[:2]
856
+ else:
857
+ raise ValueError(
858
+ 'You have to specify either input_ids or inputs_embeds')
859
+
860
+ seq_length_with_past = seq_length
861
+ past_key_values_length = 0
862
+ if past_key_values is not None:
863
+ past_key_values_length = past_key_values[0][0].shape[2]
864
+ seq_length_with_past = seq_length_with_past + past_key_values_length
865
+
866
+ if position_ids is None:
867
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
868
+ position_ids = torch.arange(
869
+ past_key_values_length,
870
+ seq_length + past_key_values_length,
871
+ dtype=torch.long,
872
+ device=device)
873
+ position_ids = position_ids.unsqueeze(0)
874
+
875
+ if inputs_embeds is None:
876
+ inputs_embeds = self.tok_embeddings(input_ids)
877
+ im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
878
+ inputs_embeds.device).bool()
879
+ # embed positions
880
+ if attention_mask is None:
881
+ attention_mask = torch.ones((batch_size, seq_length_with_past),
882
+ dtype=torch.bool,
883
+ device=inputs_embeds.device)
884
+ attention_mask = self._prepare_decoder_attention_mask(
885
+ attention_mask, (batch_size, seq_length), inputs_embeds,
886
+ past_key_values_length)
887
+
888
+ # embed positions
889
+ hidden_states = inputs_embeds
890
+
891
+ if self.gradient_checkpointing and self.training:
892
+ if use_cache:
893
+ logger.warning_once(
894
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
895
+ )
896
+ use_cache = False
897
+
898
+ # decoder layers
899
+ all_hidden_states = () if output_hidden_states else None
900
+ all_self_attns = () if output_attentions else None
901
+ next_decoder_cache = () if use_cache else None
902
+
903
+ for idx, decoder_layer in enumerate(self.layers):
904
+ if output_hidden_states:
905
+ all_hidden_states += (hidden_states, )
906
+
907
+ past_key_value = past_key_values[
908
+ idx] if past_key_values is not None else None
909
+
910
+ if self.gradient_checkpointing and self.training:
911
+
912
+ def create_custom_forward(module):
913
+
914
+ def custom_forward(*inputs):
915
+ # None for past_key_value
916
+ return module(*inputs, output_attentions, None,
917
+ im_mask)
918
+
919
+ return custom_forward
920
+
921
+ layer_outputs = torch.utils.checkpoint.checkpoint(
922
+ create_custom_forward(decoder_layer),
923
+ hidden_states,
924
+ attention_mask,
925
+ position_ids,
926
+ None,
927
+ )
928
+ else:
929
+ layer_outputs = decoder_layer(
930
+ hidden_states,
931
+ attention_mask=attention_mask,
932
+ position_ids=position_ids,
933
+ past_key_value=past_key_value,
934
+ output_attentions=output_attentions,
935
+ use_cache=use_cache,
936
+ im_mask=im_mask,
937
+ )
938
+
939
+ hidden_states = layer_outputs[0]
940
+
941
+ if use_cache:
942
+ next_decoder_cache += (
943
+ layer_outputs[2 if output_attentions else 1], )
944
+
945
+ if output_attentions:
946
+ all_self_attns += (layer_outputs[1], )
947
+
948
+ hidden_states = self.norm(hidden_states)
949
+
950
+ # add hidden states from the last decoder layer
951
+ if output_hidden_states:
952
+ all_hidden_states += (hidden_states, )
953
+
954
+ next_cache = next_decoder_cache if use_cache else None
955
+ if not return_dict:
956
+ return tuple(
957
+ v for v in
958
+ [hidden_states, next_cache, all_hidden_states, all_self_attns]
959
+ if v is not None)
960
+ return BaseModelOutputWithPast(
961
+ last_hidden_state=hidden_states,
962
+ past_key_values=next_cache,
963
+ hidden_states=all_hidden_states,
964
+ attentions=all_self_attns,
965
+ )
modeling_internlm_xcomposer2.py ADDED
@@ -0,0 +1,608 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # Copyright (c) InternLM. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """PyTorch InternLMXComposer2 model."""
20
+ import copy
21
+ import queue
22
+ import threading
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.utils.checkpoint
27
+ from PIL import Image
28
+ from torch import nn
29
+ from torch.nn import CrossEntropyLoss
30
+ from torchvision import transforms
31
+ from torchvision.transforms.functional import InterpolationMode
32
+ from transformers.modeling_outputs import CausalLMOutputWithPast
33
+ from transformers.utils import (add_start_docstrings_to_model_forward,
34
+ replace_return_docstrings)
35
+
36
+ try:
37
+ from transformers.generation.streamers import BaseStreamer
38
+ except: # noqa # pylint: disable=bare-except
39
+ BaseStreamer = None
40
+
41
+ from .build_mlp import build_vision_projector, build_vision_tower
42
+ from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config
43
+ from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model,
44
+ InternLM2PreTrainedModel)
45
+
46
+ _CONFIG_FOR_DOC = 'InternLMXcomposer2Config'
47
+
48
+
49
+ class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
50
+ _auto_class = 'AutoModelForCausalLM'
51
+
52
+ _tied_weights_keys = ['output.weight']
53
+
54
+ def __init__(self, config):
55
+ super().__init__(config)
56
+ self.model = InternLM2Model(config)
57
+ self.vocab_size = config.vocab_size
58
+ self.output = nn.Linear(
59
+ config.hidden_size, config.vocab_size, bias=False)
60
+ self.tokenizer = None
61
+
62
+ self.max_length = config.max_length
63
+ print(f'Set max length to {self.max_length}')
64
+ # Initialize weights and apply final processing
65
+ self.post_init()
66
+
67
+ self.vit = build_vision_tower()
68
+ self.vision_proj = build_vision_projector()
69
+
70
+ self.vis_processor = transforms.Compose([
71
+ transforms.Resize((config.img_size, config.img_size),
72
+ interpolation=InterpolationMode.BICUBIC),
73
+ transforms.ToTensor(),
74
+ transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
75
+ (0.26862954, 0.26130258, 0.27577711)),
76
+ ])
77
+
78
+ def _set_gradient_checkpointing(self, module, value=False):
79
+ if isinstance(module, InternLM2Model):
80
+ module.gradient_checkpointing = value
81
+ if value:
82
+ self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
83
+
84
+ def get_input_embeddings(self):
85
+ return self.model.tok_embeddings
86
+
87
+ def set_input_embeddings(self, value):
88
+ self.model.tok_embeddings = value
89
+
90
+ def get_output_embeddings(self):
91
+ return self.output
92
+
93
+ def set_output_embeddings(self, new_embeddings):
94
+ self.output = new_embeddings
95
+
96
+ def set_decoder(self, decoder):
97
+ self.model = decoder
98
+
99
+ def get_decoder(self):
100
+ return self.model
101
+
102
+ def encode_text(self, text, add_special_tokens=False):
103
+ token = self.tokenizer(
104
+ text, return_tensors='pt',
105
+ add_special_tokens=add_special_tokens).input_ids.to(self.device)
106
+ embs = self.model.tok_embeddings(token)
107
+ return embs
108
+
109
+ def encode_img(self, image):
110
+ if image is None:
111
+ return None
112
+ if isinstance(image, str):
113
+ image = Image.open(image).convert('RGB')
114
+ image = self.vis_processor(image).unsqueeze(0).to(self.device)
115
+ else:
116
+ assert isinstance(image, torch.Tensor)
117
+
118
+ img_embeds, atts_img, img_target = self.img2emb(image)
119
+ return img_embeds
120
+
121
+ def img2emb(self, image):
122
+ img_embeds = self.vision_proj(self.vit(image.to(self.device)))
123
+ atts_img = torch.ones(
124
+ img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
125
+
126
+ img_target = torch.ones(
127
+ img_embeds.size()[:2], dtype=torch.long).to(
128
+ img_embeds.device) * -100
129
+
130
+ return img_embeds, atts_img, img_target
131
+
132
+ def prompt_wrap(self, img_embeds, prompt):
133
+ batch_size = img_embeds.shape[0]
134
+ p_before, p_after = prompt.split('<ImageHere>')
135
+ p_before_tokens = self.tokenizer(
136
+ p_before, return_tensors='pt',
137
+ add_special_tokens=True).to(img_embeds.device)
138
+
139
+ p_before_embeds = self.model.tok_embeddings(
140
+ p_before_tokens.input_ids).expand(batch_size, -1, -1)
141
+ wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
142
+
143
+ wrapped_atts_img = torch.ones(
144
+ wrapped_img_embeds.size()[:-1],
145
+ dtype=torch.long).to(img_embeds.device)
146
+
147
+ wrapped_target = torch.ones(
148
+ batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
149
+ img_embeds.device) * -100
150
+
151
+ return wrapped_img_embeds, wrapped_atts_img, wrapped_target
152
+
153
+ def text2emb(self, text, add_special=False):
154
+ to_regress_tokens = self.tokenizer(
155
+ text,
156
+ return_tensors='pt',
157
+ padding='longest',
158
+ truncation=True,
159
+ add_special_tokens=add_special).to(self.device)
160
+
161
+ targets = self.mask_human_targets(to_regress_tokens.input_ids)
162
+ targets = targets.to(self.device)
163
+ return to_regress_tokens, targets
164
+
165
+ def interleav_wrap_chat(self, tokenizer, query, image, history, meta_instruction):
166
+ prompt = ''
167
+ if meta_instruction:
168
+ prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
169
+ for record in history:
170
+ prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
171
+ prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
172
+
173
+ im_len = image.shape[1]
174
+ image_nums = len(image)
175
+ parts = prompt.split('<ImageHere>')
176
+ wrap_embeds, wrap_im_mask = [], []
177
+ temp_len = 0
178
+
179
+ for idx, part in enumerate(parts):
180
+ if len(part) > 0:
181
+ part_tokens = tokenizer(part, return_tensors='pt').to(self.device)
182
+ part_embeds = self.model.tok_embeddings(
183
+ part_tokens.input_ids)
184
+ wrap_embeds.append(part_embeds)
185
+ wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
186
+ temp_len += part_embeds.shape[1]
187
+ if idx < image_nums:
188
+ wrap_embeds.append(image[idx].unsqueeze(0))
189
+ wrap_im_mask.append(torch.ones(1, image[idx].shape[0]))
190
+ temp_len += im_len
191
+
192
+ if temp_len > self.max_length:
193
+ break
194
+
195
+ wrap_embeds = torch.cat(wrap_embeds, dim=1)
196
+ wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
197
+ wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
198
+ wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device).bool()
199
+ inputs = {
200
+ 'inputs_embeds': wrap_embeds
201
+ }
202
+ return inputs, wrap_im_mask
203
+
204
+ def interleav_wrap(self, img_list, text_list):
205
+ wrap_embeds_list, wrap_atts_list = [], []
206
+ wrap_target_list, wrap_im_mask_list = [], []
207
+
208
+ for image, text in zip(img_list, text_list):
209
+ img_embeds, atts_img, img_target = self.img2emb(image)
210
+ text = text[0]
211
+ parts = text.split('<ImageHere>')
212
+ wrap_tokens, wrap_embeds, wrap_atts, wrap_im_mask = [], [], [], []
213
+ temp_len = 0
214
+ image_nums, im_len = img_embeds.shape[:2]
215
+ need_bos = True
216
+ for idx, part in enumerate(parts):
217
+ if len(part) > 0:
218
+ part_tokens = self.tokenizer(
219
+ part,
220
+ return_tensors='pt',
221
+ padding='longest',
222
+ add_special_tokens=need_bos).to(self.device)
223
+ if need_bos:
224
+ need_bos = False
225
+ wrap_tokens.append(part_tokens.input_ids)
226
+ part_embeds = self.model.tok_embeddings(
227
+ part_tokens.input_ids)
228
+ wrap_embeds.append(part_embeds)
229
+ wrap_atts.append(part_tokens.attention_mask)
230
+ wrap_im_mask.append(
231
+ torch.zeros(part_embeds.shape[:2]).to(self.device))
232
+
233
+ temp_len += part_embeds.shape[1]
234
+ if idx < image_nums:
235
+ wrap_tokens.append(img_target[idx].unsqueeze(0))
236
+ wrap_embeds.append(img_embeds[idx].unsqueeze(0))
237
+ wrap_atts.append(atts_img[idx].unsqueeze(0))
238
+ wrap_im_mask.append(
239
+ torch.ones_like(atts_img[idx].unsqueeze(0)))
240
+
241
+ temp_len += im_len
242
+ if temp_len > self.max_length:
243
+ break
244
+
245
+ wrap_tokens = torch.cat(wrap_tokens, dim=1)
246
+ wrap_embeds = torch.cat(wrap_embeds, dim=1)
247
+ wrap_atts = torch.cat(wrap_atts, dim=1)
248
+ wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
249
+
250
+ wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
251
+
252
+ wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
253
+ wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
254
+ wrap_target = wrap_target[:, :self.max_length].to(self.device)
255
+ wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device)
256
+
257
+ wrap_embeds_list.append(wrap_embeds)
258
+ wrap_atts_list.append(wrap_atts)
259
+ wrap_target_list.append(wrap_target)
260
+ wrap_im_mask_list.append(wrap_im_mask)
261
+
262
+ wrap_embeds = torch.cat(wrap_embeds_list)
263
+ wrap_atts = torch.cat(wrap_atts_list)
264
+ wrap_target = torch.cat(wrap_target_list)
265
+ wrap_im_mask = torch.cat(wrap_im_mask_list)
266
+ return wrap_embeds, wrap_atts, wrap_target, wrap_im_mask
267
+
268
+ def mask_human_targets(self, input_ids, pure=False):
269
+ target_batch = []
270
+ for bs in range(input_ids.shape[0]):
271
+ ids = input_ids[bs]
272
+ targets = copy.deepcopy(ids)
273
+ end_count = 0
274
+ last_eoa = 0
275
+ for i, temp_id in enumerate(ids):
276
+ if temp_id == 92542:
277
+ if end_count % 2 == 0:
278
+ targets[last_eoa:i + 6] = -100
279
+ else:
280
+ last_eoa = i + 1
281
+ end_count += 1
282
+ # # eos and following pad
283
+ elif temp_id == 2:
284
+ # loss on eos, but not on pad
285
+ targets[i + 1:] = -100
286
+ break
287
+ # trunction, end at last question
288
+ if temp_id != 2 and end_count % 2 == 0:
289
+ # mask all after the last answer
290
+ targets[last_eoa + 1:] = -100
291
+ target_batch.append(targets.unsqueeze(0))
292
+ target_batch = torch.cat(target_batch, dim=0)
293
+ return target_batch
294
+
295
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
296
+ @replace_return_docstrings(
297
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
298
+ def forward(self,
299
+ input_ids: torch.LongTensor = None,
300
+ attention_mask: Optional[torch.Tensor] = None,
301
+ position_ids: Optional[torch.LongTensor] = None,
302
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
303
+ inputs_embeds: Optional[torch.FloatTensor] = None,
304
+ labels: Optional[torch.LongTensor] = None,
305
+ use_cache: Optional[bool] = None,
306
+ output_attentions: Optional[bool] = None,
307
+ output_hidden_states: Optional[bool] = None,
308
+ return_dict: Optional[bool] = None,
309
+ **kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
310
+ r"""
311
+ Args:
312
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
313
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
314
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
315
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
316
+ Returns:
317
+ """
318
+
319
+ samples = kwargs.get('samples', None)
320
+ if samples:
321
+ if samples['data_type'][0] == 'text':
322
+ has_img = False
323
+ elif samples['data_type'][0] == 'multi':
324
+ has_img = True
325
+ else:
326
+ raise NotImplementedError
327
+
328
+ # encode text
329
+ text = samples['text_input']
330
+ # encode image
331
+ if has_img:
332
+ image = samples['image']
333
+ to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap(
334
+ image, text)
335
+ else:
336
+ to_regress_tokens, targets = self.text2emb(
337
+ text, add_special=True)
338
+ to_regress_embeds = self.model.tok_embeddings(
339
+ to_regress_tokens.input_ids)
340
+ attention_mask = to_regress_tokens.attention_mask
341
+ im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
342
+
343
+ inputs_embeds = to_regress_embeds[:, :self.max_length]
344
+ attention_mask = attention_mask[:, :self.max_length]
345
+ targets = targets[:, :self.max_length]
346
+ im_mask = im_mask[:, :self.max_length].bool()
347
+ labels = targets
348
+ else:
349
+ im_mask = kwargs.get('im_mask', None)
350
+ if im_mask is None and inputs_embeds is not None:
351
+ im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
352
+ inputs_embeds.device)
353
+ im_mask = im_mask.bool()
354
+
355
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
356
+ output_hidden_states = (
357
+ output_hidden_states if output_hidden_states is not None else
358
+ self.config.output_hidden_states)
359
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
360
+
361
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
362
+ outputs = self.model(
363
+ input_ids=input_ids,
364
+ attention_mask=attention_mask,
365
+ position_ids=position_ids,
366
+ past_key_values=past_key_values,
367
+ inputs_embeds=inputs_embeds,
368
+ use_cache=use_cache,
369
+ output_attentions=output_attentions,
370
+ output_hidden_states=output_hidden_states,
371
+ return_dict=return_dict,
372
+ im_mask=im_mask,
373
+ )
374
+
375
+ hidden_states = outputs[0]
376
+ logits = self.output(hidden_states)
377
+ logits = logits.float()
378
+
379
+ loss = None
380
+ if labels is not None:
381
+ # Shift so that tokens < n predict n
382
+ shift_logits = logits[..., :-1, :].contiguous()
383
+ shift_labels = labels[..., 1:].contiguous()
384
+ # Flatten the tokens
385
+ loss_fct = CrossEntropyLoss()
386
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
387
+ shift_labels = shift_labels.view(-1)
388
+ # Enable model parallelism
389
+ shift_labels = shift_labels.to(shift_logits.device)
390
+ loss = loss_fct(shift_logits, shift_labels)
391
+
392
+ if not return_dict:
393
+ output = (logits, ) + outputs[1:]
394
+ return (loss, ) + output if loss is not None else output
395
+
396
+ return CausalLMOutputWithPast(
397
+ loss=loss,
398
+ logits=logits,
399
+ past_key_values=outputs.past_key_values,
400
+ hidden_states=outputs.hidden_states,
401
+ attentions=outputs.attentions,
402
+ )
403
+
404
+ def prepare_inputs_for_generation(self,
405
+ input_ids,
406
+ past_key_values=None,
407
+ attention_mask=None,
408
+ inputs_embeds=None,
409
+ im_mask=None,
410
+ **kwargs):
411
+ if past_key_values is not None:
412
+ past_length = past_key_values[0][0].shape[2]
413
+
414
+ # Some generation methods already pass only the last input ID
415
+ if input_ids.shape[1] > past_length:
416
+ remove_prefix_length = past_length
417
+ else:
418
+ # Default to old behavior: keep only final ID
419
+ remove_prefix_length = input_ids.shape[1] - 1
420
+
421
+ input_ids = input_ids[:, remove_prefix_length:]
422
+
423
+ position_ids = kwargs.get('position_ids', None)
424
+ if attention_mask is not None and position_ids is None:
425
+ # create position_ids on the fly for batch generation
426
+ position_ids = attention_mask.long().cumsum(-1) - 1
427
+ position_ids.masked_fill_(attention_mask == 0, 1)
428
+ if past_key_values:
429
+ position_ids = position_ids[:, -input_ids.shape[1]:]
430
+
431
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
432
+ if inputs_embeds is not None and past_key_values is None:
433
+ model_inputs = {'inputs_embeds': inputs_embeds}
434
+ else:
435
+ model_inputs = {'input_ids': input_ids}
436
+
437
+ im_mask = im_mask
438
+
439
+ model_inputs.update({
440
+ 'position_ids': position_ids,
441
+ 'past_key_values': past_key_values,
442
+ 'use_cache': kwargs.get('use_cache'),
443
+ 'attention_mask': attention_mask,
444
+ 'im_mask': im_mask,
445
+ })
446
+ return model_inputs
447
+
448
+ @staticmethod
449
+ def _reorder_cache(past_key_values, beam_idx):
450
+ reordered_past = ()
451
+ for layer_past in past_key_values:
452
+ reordered_past += (tuple(
453
+ past_state.index_select(0, beam_idx.to(past_state.device))
454
+ for past_state in layer_past), )
455
+ return reordered_past
456
+
457
+ def build_inputs(self,
458
+ tokenizer,
459
+ query: str,
460
+ history: List[Tuple[str, str]] = [],
461
+ meta_instruction=''):
462
+ prompt = ''
463
+ if meta_instruction:
464
+ prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
465
+ else:
466
+ prompt += '<s>'
467
+ for record in history:
468
+ prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
469
+ prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
470
+ return tokenizer([prompt], return_tensors='pt')
471
+
472
+ @torch.no_grad()
473
+ def chat(
474
+ self,
475
+ tokenizer,
476
+ query: str,
477
+ image: torch.Tensor = None,
478
+ history: List[Tuple[str, str]] = [],
479
+ streamer: Optional[BaseStreamer] = None,
480
+ max_new_tokens: int = 1024,
481
+ do_sample: bool = True,
482
+ temperature: float = 1.0,
483
+ top_p: float = 0.8,
484
+ repetition_penalty: float=1.005,
485
+ meta_instruction:
486
+ str = 'You are an AI assistant whose name is InternLM-XComposer (浦���·灵笔).\n'
487
+ '- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
488
+ '- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.\n'
489
+ '- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating responses effectively based on the provided image.',
490
+ **kwargs,
491
+ ):
492
+ if image is None:
493
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
494
+ im_mask = torch.zeros(inputs['input_ids'].shape[:2]).cuda().bool()
495
+ else:
496
+ image = self.encode_img(image)
497
+ inputs, im_mask = self.interleav_wrap_chat(tokenizer, query, image, history, meta_instruction)
498
+ inputs = {
499
+ k: v.to(self.device)
500
+ for k, v in inputs.items() if torch.is_tensor(v)
501
+ }
502
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
503
+ eos_token_id = [
504
+ tokenizer.eos_token_id,
505
+ tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
506
+ ]
507
+ outputs = self.generate(
508
+ **inputs,
509
+ streamer=streamer,
510
+ max_new_tokens=max_new_tokens,
511
+ do_sample=do_sample,
512
+ temperature=temperature,
513
+ top_p=top_p,
514
+ eos_token_id=eos_token_id,
515
+ repetition_penalty=repetition_penalty,
516
+ im_mask=im_mask,
517
+ **kwargs,
518
+ )
519
+ if image is None:
520
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
521
+ else:
522
+ outputs = outputs[0].cpu().tolist()
523
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
524
+ response = response.split('[UNUSED_TOKEN_145]')[0]
525
+ history = history + [(query, response)]
526
+ return response, history
527
+
528
+ @torch.no_grad()
529
+ def stream_chat(
530
+ self,
531
+ tokenizer,
532
+ query: str,
533
+ history: List[Tuple[str, str]] = [],
534
+ max_new_tokens: int = 1024,
535
+ do_sample: bool = True,
536
+ temperature: float = 0.8,
537
+ top_p: float = 0.8,
538
+ **kwargs,
539
+ ):
540
+ """Return a generator in format: (response, history) Eg.
541
+
542
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) ('你好,有什么可以帮助您的吗?', [('你好',
543
+ '你好,有什么可以帮助您的吗?')])
544
+ """
545
+ if BaseStreamer is None:
546
+ raise ModuleNotFoundError(
547
+ 'The version of `transformers` is too low. Please make sure '
548
+ 'that you have installed `transformers>=4.28.0`.')
549
+
550
+ response_queue = queue.Queue(maxsize=20)
551
+
552
+ class ChatStreamer(BaseStreamer):
553
+
554
+ def __init__(self, tokenizer) -> None:
555
+ super().__init__()
556
+ self.tokenizer = tokenizer
557
+ self.queue = response_queue
558
+ self.query = query
559
+ self.history = history
560
+ self.response = ''
561
+ self.received_inputs = False
562
+ self.queue.put(
563
+ (self.response, history + [(self.query, self.response)]))
564
+
565
+ def put(self, value):
566
+ if len(value.shape) > 1 and value.shape[0] > 1:
567
+ raise ValueError('ChatStreamer only supports batch size 1')
568
+ elif len(value.shape) > 1:
569
+ value = value[0]
570
+
571
+ if not self.received_inputs:
572
+ # The first received value is input_ids, ignore here
573
+ self.received_inputs = True
574
+ return
575
+
576
+ token = self.tokenizer.decode([value[-1]],
577
+ skip_special_tokens=True)
578
+ if token.strip() != '[UNUSED_TOKEN_145]':
579
+ self.response = self.response + token
580
+ history = self.history + [(self.query, self.response)]
581
+ self.queue.put((self.response, history))
582
+
583
+ def end(self):
584
+ self.queue.put(None)
585
+
586
+ def stream_producer():
587
+ return self.chat(
588
+ tokenizer=tokenizer,
589
+ query=query,
590
+ streamer=ChatStreamer(tokenizer=tokenizer),
591
+ history=history,
592
+ max_new_tokens=max_new_tokens,
593
+ do_sample=do_sample,
594
+ temperature=temperature,
595
+ top_p=top_p,
596
+ **kwargs,
597
+ )
598
+
599
+ def consumer():
600
+ producer = threading.Thread(target=stream_producer)
601
+ producer.start()
602
+ while True:
603
+ res = response_queue.get()
604
+ if res is None:
605
+ return
606
+ yield res
607
+
608
+ return consumer()
quantize_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "damp_percent": 0.01,
5
+ "desc_act": false,
6
+ "static_groups": false,
7
+ "sym": true,
8
+ "true_sequential": true,
9
+ "model_name_or_path": null,
10
+ "model_file_base_name": null
11
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenization_internlm_xcomposer2.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) InternLM. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """Tokenization classes for IntermLM."""
20
+ import os
21
+ from shutil import copyfile
22
+ from typing import Any, Dict, List, Optional, Tuple
23
+
24
+ import sentencepiece as spm
25
+ from transformers.tokenization_utils import PreTrainedTokenizer
26
+ from transformers.utils import logging
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
31
+
32
+ PRETRAINED_VOCAB_FILES_MAP = {}
33
+
34
+
35
+ class InternLMXComposer2Tokenizer(PreTrainedTokenizer):
36
+ """Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+ """ Initialization"""
79
+
80
+ @property
81
+ def no_prefix_space_tokens(self):
82
+ if self._no_prefix_space_tokens is None:
83
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
84
+ self._no_prefix_space_tokens = {
85
+ i
86
+ for i, tok in enumerate(vocab) if not tok.startswith('▁')
87
+ }
88
+ return self._no_prefix_space_tokens
89
+
90
+ @property
91
+ def vocab_size(self):
92
+ """Returns vocab size."""
93
+ return self.sp_model.get_piece_size()
94
+
95
+ @property
96
+ def bos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.bos_id()
98
+
99
+ @property
100
+ def eos_token_id(self) -> Optional[int]:
101
+ return self.sp_model.eos_id()
102
+
103
+ def get_vocab(self):
104
+ """Returns vocab as a dict."""
105
+ vocab = {
106
+ self.convert_ids_to_tokens(i): i
107
+ for i in range(self.vocab_size)
108
+ }
109
+ vocab.update(self.added_tokens_encoder)
110
+ return vocab
111
+
112
+ def _tokenize(self, text):
113
+ """Returns a tokenized string."""
114
+ return self.sp_model.encode(text, out_type=str)
115
+
116
+ def _convert_token_to_id(self, token):
117
+ """Converts a token (str) in an id using the vocab."""
118
+ return self.sp_model.piece_to_id(token)
119
+
120
+ def _convert_id_to_token(self, index):
121
+ """Converts an index (integer) in a token (str) using the vocab."""
122
+ token = self.sp_model.IdToPiece(index)
123
+ return token
124
+
125
+ def _maybe_add_prefix_space(self, tokens, decoded):
126
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
127
+ return ' ' + decoded
128
+ else:
129
+ return decoded
130
+
131
+ def convert_tokens_to_string(self, tokens):
132
+ """Converts a sequence of tokens (string) in a single string."""
133
+ current_sub_tokens = []
134
+ out_string = ''
135
+ prev_is_special = False
136
+ for token in tokens:
137
+ # make sure that special tokens are not decoded using sentencepiece model
138
+ if token in self.all_special_tokens:
139
+ if not prev_is_special:
140
+ out_string += ' '
141
+ out_string += self.sp_model.decode(current_sub_tokens) + token
142
+ prev_is_special = True
143
+ current_sub_tokens = []
144
+ else:
145
+ current_sub_tokens.append(token)
146
+ prev_is_special = False
147
+ out_string += self.sp_model.decode(current_sub_tokens)
148
+ out_string = self.clean_up_tokenization(out_string)
149
+ out_string = self._maybe_add_prefix_space(
150
+ tokens=tokens, decoded=out_string)
151
+ return out_string[1:]
152
+
153
+ def save_vocabulary(self,
154
+ save_directory,
155
+ filename_prefix: Optional[str] = None) -> Tuple[str]:
156
+ """Save the vocabulary and special tokens file to a directory.
157
+
158
+ Args:
159
+ save_directory (`str`):
160
+ The directory in which to save the vocabulary.
161
+
162
+ Returns:
163
+ `Tuple(str)`: Paths to the files saved.
164
+ """
165
+ if not os.path.isdir(save_directory):
166
+ logger.error(
167
+ f'Vocabulary path ({save_directory}) should be a directory')
168
+ return
169
+ out_vocab_file = os.path.join(
170
+ save_directory,
171
+ (filename_prefix + '-' if filename_prefix else '') +
172
+ VOCAB_FILES_NAMES['vocab_file'])
173
+
174
+ if os.path.abspath(self.vocab_file) != os.path.abspath(
175
+ out_vocab_file) and os.path.isfile(self.vocab_file):
176
+ copyfile(self.vocab_file, out_vocab_file)
177
+ elif not os.path.isfile(self.vocab_file):
178
+ with open(out_vocab_file, 'wb') as fi:
179
+ content_spiece_model = self.sp_model.serialized_model_proto()
180
+ fi.write(content_spiece_model)
181
+
182
+ return (out_vocab_file, )
183
+
184
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
185
+ if self.add_bos_token:
186
+ bos_token_ids = [self.bos_token_id]
187
+ else:
188
+ bos_token_ids = []
189
+
190
+ output = bos_token_ids + token_ids_0
191
+
192
+ if token_ids_1 is not None:
193
+ output = output + token_ids_1
194
+
195
+ if self.add_eos_token:
196
+ output = output + [self.eos_token_id]
197
+
198
+ return output
199
+
200
+ def get_special_tokens_mask(
201
+ self,
202
+ token_ids_0: List[int],
203
+ token_ids_1: Optional[List[int]] = None,
204
+ already_has_special_tokens: bool = False) -> List[int]:
205
+ """Retrieve sequence ids from a token list that has no special tokens
206
+ added. This method is called when adding special tokens using the
207
+ tokenizer `prepare_for_model` method.
208
+
209
+ Args:
210
+ token_ids_0 (`List[int]`):
211
+ List of IDs.
212
+ token_ids_1 (`List[int]`, *optional*):
213
+ Optional second list of IDs for sequence pairs.
214
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
215
+ Whether or not the token list is already formatted with special tokens for the model.
216
+
217
+ Returns:
218
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
219
+ """
220
+ if already_has_special_tokens:
221
+ return super().get_special_tokens_mask(
222
+ token_ids_0=token_ids_0,
223
+ token_ids_1=token_ids_1,
224
+ already_has_special_tokens=True)
225
+
226
+ if token_ids_1 is None:
227
+ return [1] + ([0] * len(token_ids_0)) + [1]
228
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + (
229
+ [0] * len(token_ids_1)) + [1]
230
+
231
+ def create_token_type_ids_from_sequences(
232
+ self,
233
+ token_ids_0: List[int],
234
+ token_ids_1: Optional[List[int]] = None) -> List[int]:
235
+ """Create a mask from the two sequences passed to be used in a
236
+ sequence-pair classification task. T5 does not make use of token type
237
+ ids, therefore a list of zeros is returned.
238
+
239
+ Args:
240
+ token_ids_0 (`List[int]`):
241
+ List of IDs.
242
+ token_ids_1 (`List[int]`, *optional*):
243
+ Optional second list of IDs for sequence pairs.
244
+
245
+ Returns:
246
+ `List[int]`: List of zeros.
247
+ """
248
+ eos = [self.eos_token_id]
249
+
250
+ if token_ids_1 is None:
251
+ return len(token_ids_0 + eos) * [0]
252
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_internlm_xcomposer2.InternLMXComposer2Tokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "bos_token": "<s>",
9
+ "clean_up_tokenization_spaces": false,
10
+ "eos_token": "</s>",
11
+ "model_max_length": 1000000000000000019884624838656,
12
+ "pad_token": "</s>",
13
+ "padding_side": "right",
14
+ "tokenizer_class": "InternLMXComposer2Tokenizer",
15
+ "unk_token": "<unk>"
16
+ }