File size: 12,718 Bytes
a60c42d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
---
base_model: mistralai/Mixtral-8x7B-v0.1
tags:
- Mixtral
- instruct
- finetune
- chatml
- DPO
- RLHF
- gpt4
- synthetic data
- distillation
model-index:
- name: Nous-Hermes-2-Mixtral-8x7B-DPO
  results: []
license: apache-2.0
language:
- en
---

Quantized using 200 samples of 8192 tokens from an RP-oriented [PIPPA](https://huggingface.co/datasets/royallab/PIPPA-cleaned) dataset. For purposes other than RP, use quantizations done on a more general dataset.

Requires ExllamaV2 version 0.0.11 and up.

Original model link: [NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO)

Original model README below.

***

# Nous Hermes 2 - Mixtral 8x7B - DPO

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/btRmXWMG7PXatTs-u3G85.jpeg)

## Model description

Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). 

The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks.

This is the SFT + DPO version of Mixtral Hermes 2, we have also released an SFT only version, for people to find which works best for them, which can be found here: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT

## We are grateful to Together.ai for sponsoring our compute during the many experiments both training Mixtral and working on DPO!

# Table of Contents
1. [Example Outputs](#example-outputs)
2. [Benchmark Results](#benchmark-results)
    - GPT4All
    - AGIEval
    - BigBench
    - Comparison to Mixtral-Instruct
3. [Prompt Format](#prompt-format)
4. [Inference Example Code](#inference-code)
5. [Quantized Models](#quantized-models)


## Example Outputs

### Writing Code for Data Visualization

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QJ5RHrOqB5GMP7ZAZ5NTk.png)

### Writing Cyberpunk Psychedelic Poems

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wuKnMlM2HBGdyUFO7mY_H.png)

### Performing Backtranslation to Create Prompts from Input Text

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QElwK1UI9PQQT6WosXpo1.png)

## Benchmark Results

Nous-Hermes 2 on Mixtral 8x7B is a major improvement across the board on the benchmarks below compared to the base Mixtral model, and is the first model to beat the flagship Mixtral Finetune by MistralAI.

## GPT4All:
```
|    Task     |Version| Metric |Value |   |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge|      0|acc     |0.5990|±  |0.0143|
|             |       |acc_norm|0.6425|±  |0.0140|
|arc_easy     |      0|acc     |0.8657|±  |0.0070|
|             |       |acc_norm|0.8636|±  |0.0070|
|boolq        |      1|acc     |0.8783|±  |0.0057|
|hellaswag    |      0|acc     |0.6661|±  |0.0047|
|             |       |acc_norm|0.8489|±  |0.0036|
|openbookqa   |      0|acc     |0.3440|±  |0.0213|
|             |       |acc_norm|0.4660|±  |0.0223|
|piqa         |      0|acc     |0.8324|±  |0.0087|
|             |       |acc_norm|0.8379|±  |0.0086|
|winogrande   |      0|acc     |0.7616|±  |0.0120|
```  
Average: 75.70

## AGIEval:
```
|             Task             |Version| Metric |Value |   |Stderr|                                                                                                                                                         
|------------------------------|------:|--------|-----:|---|-----:|                                                                                                                                                         
|agieval_aqua_rat              |      0|acc     |0.2402|±  |0.0269|                                                                                                                                                         
|                              |       |acc_norm|0.2520|±  |0.0273|
|agieval_logiqa_en             |      0|acc     |0.4117|±  |0.0193|
|                              |       |acc_norm|0.4055|±  |0.0193|
|agieval_lsat_ar               |      0|acc     |0.2348|±  |0.0280|
|                              |       |acc_norm|0.2087|±  |0.0269|
|agieval_lsat_lr               |      0|acc     |0.5549|±  |0.0220|                                                                            
|                              |       |acc_norm|0.5294|±  |0.0221|
|agieval_lsat_rc               |      0|acc     |0.6617|±  |0.0289|
|                              |       |acc_norm|0.6357|±  |0.0294|
|agieval_sat_en                |      0|acc     |0.8010|±  |0.0279|
|                              |       |acc_norm|0.7913|±  |0.0284|
|agieval_sat_en_without_passage|      0|acc     |0.4806|±  |0.0349|
|                              |       |acc_norm|0.4612|±  |0.0348|
|agieval_sat_math              |      0|acc     |0.4909|±  |0.0338|
|                              |       |acc_norm|0.4000|±  |0.0331|
```  
Average: 46.05

## BigBench:
```
|                      Task                      |Version|       Metric        |Value |   |Stderr|
|------------------------------------------------|------:|---------------------|-----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|0.6105|±  |0.0355|
|bigbench_date_understanding                     |      0|multiple_choice_grade|0.7182|±  |0.0235|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|0.5736|±  |0.0308|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|0.4596|±  |0.0263|
|                                                |       |exact_str_match      |0.0000|±  |0.0000|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|0.3500|±  |0.0214|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|0.2500|±  |0.0164|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|0.5200|±  |0.0289|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|0.3540|±  |0.0214|
|bigbench_navigate                               |      0|multiple_choice_grade|0.5000|±  |0.0158|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|0.6900|±  |0.0103|
|bigbench_ruin_names                             |      0|multiple_choice_grade|0.6317|±  |0.0228|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|0.2535|±  |0.0138|
|bigbench_snarks                                 |      0|multiple_choice_grade|0.7293|±  |0.0331|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|0.6744|±  |0.0149|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|0.7400|±  |0.0139|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|0.2176|±  |0.0117|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|0.1543|±  |0.0086|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|0.5200|±  |0.0289|
```  
Average: 49.70

# Benchmark Comparison Charts

## GPT4All

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HK6bSbMfxX_qzxReAcJH9.png)

## AGI-Eval

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bs3ZvvEACa5Gm4p1JBsZ4.png)

## BigBench Reasoning Test

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wcceowcVpI12UxliwkOja.png)

## Comparison to Mixtral Instruct:

Our benchmarks show gains in many benchmarks against Mixtral Instruct v0.1, on average, beating the flagship Mixtral model.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/jtJ54JGMyknU_4Tmw87_i.png)

# Prompt Format

Nous Hermes 2 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.

System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.

This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.

This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.

Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
```
<|im_start|>system
You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
<|im_start|>user
Hello, who are you?<|im_end|>
<|im_start|>assistant
Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
```

This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
`tokenizer.apply_chat_template()` method:

```python
messages = [
    {"role": "system", "content": "You are Hermes 2."},
    {"role": "user", "content": "Hello, who are you?"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)
```

When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
that the model continues with an assistant response.

To utilize the prompt format without a system prompt, simply leave the line out.

When quantized versions of the model are released, I recommend using LM Studio for chatting with Nous Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
In LM-Studio, simply select the ChatML Prefix on the settings side pane:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)

# Inference Code

Here is example code using HuggingFace Transformers to inference the model (note: even in 4bit, it will require more than 24GB of VRAM)

```python
# Code to inference Hermes with HF Transformers
# Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import LlamaTokenizer, MixtralForCausalLM
import bitsandbytes, flash_attn

tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', trust_remote_code=True)
model = MixtralForCausalLM.from_pretrained(
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_8bit=False,
    load_in_4bit=True,
    use_flash_attention_2=True
)

prompts = [
    """<|im_start|>system
You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
<|im_start|>user
Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
<|im_start|>assistant""",
    ]

for chat in prompts:
    print(chat)
    input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
    generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
    response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
    print(f"Response: {response}")
```  

# Quantized Models:

## All sizes of GGUF Quantizations are available here:
### SFT+DPO Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF
### SFT Only Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)