|
from typing import Dict, List, Any |
|
from transformers import pipeline |
|
|
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
def average_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) |
|
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.pipeline = pipeline("feature-extraction", model=path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.model = AutoModel.from_pretrained(path) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[List[int]]: |
|
inputs = data.pop("inputs",data) |
|
|
|
batch_dict = self.tokenizer(inputs, max_length=512, padding=True, truncation=True, return_tensors='pt') |
|
|
|
outputs = self.model(**batch_dict) |
|
|
|
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
embeddings = F.normalize(embeddings, p=2, dim=1).tolist() |
|
|
|
return embeddings |