--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-asqa-ob results: [] --- # t5-small-asqa-ob This model is a fine-tuned version of [google/t5-small-ssm-nq](https://huggingface.co/google/t5-small-ssm-nq) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9381 - Rouge1: 0.1633 - Rouge2: 0.0907 - Rougel: 0.1394 - Rougelsum: 0.1393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.8212 | 1.0 | 710 | 2.7920 | 0.1248 | 0.0624 | 0.1064 | 0.1063 | | 3.0559 | 2.0 | 1420 | 2.5937 | 0.1319 | 0.0715 | 0.1139 | 0.1138 | | 2.568 | 3.0 | 2130 | 2.4971 | 0.1398 | 0.0754 | 0.1206 | 0.1204 | | 2.384 | 4.0 | 2840 | 2.5024 | 0.1473 | 0.0817 | 0.1273 | 0.1271 | | 2.1599 | 5.0 | 3550 | 2.4947 | 0.1498 | 0.0824 | 0.1288 | 0.1287 | | 2.0444 | 6.0 | 4260 | 2.5305 | 0.1502 | 0.0837 | 0.1291 | 0.1290 | | 1.9219 | 7.0 | 4970 | 2.5486 | 0.1599 | 0.0890 | 0.1376 | 0.1373 | | 1.7532 | 8.0 | 5680 | 2.5772 | 0.1647 | 0.0914 | 0.1413 | 0.1411 | | 1.6895 | 9.0 | 6390 | 2.6346 | 0.1630 | 0.0911 | 0.1397 | 0.1395 | | 1.5751 | 10.0 | 7100 | 2.6650 | 0.1700 | 0.0944 | 0.1450 | 0.1449 | | 1.4616 | 11.0 | 7810 | 2.6705 | 0.1571 | 0.0874 | 0.1348 | 0.1346 | | 1.3923 | 12.0 | 8520 | 2.7767 | 0.1695 | 0.0951 | 0.1453 | 0.1450 | | 1.3043 | 13.0 | 9230 | 2.8091 | 0.1704 | 0.0943 | 0.1460 | 0.1457 | | 1.2868 | 14.0 | 9940 | 2.8390 | 0.1553 | 0.0854 | 0.1327 | 0.1324 | | 1.176 | 15.0 | 10650 | 2.9381 | 0.1633 | 0.0907 | 0.1394 | 0.1393 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.5.1 - Tokenizers 0.12.1