--- license: apache-2.0 tags: - generated_from_trainer datasets: din0s/asqa metrics: - rouge model-index: - name: t5-small-asqa-ob results: [] --- # t5-small-asqa-ob This model is a fine-tuned version of [google/t5-small-ssm-nq](https://huggingface.co/google/t5-small-ssm-nq) on the [ASQA](https://huggingface.co/datasets/din0s/asqa) dataset without context (closed book). It achieves the following results on the evaluation set: - Loss: 2.8099 - Rouge1: 0.1493 - Rouge2: 0.0837 - Rougel: 0.1272 - Rougelsum: 0.1270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.8208 | 1.0 | 710 | 2.7856 | 0.1267 | 0.0644 | 0.1086 | 0.1084 | | 3.0532 | 2.0 | 1420 | 2.6247 | 0.1321 | 0.0721 | 0.1145 | 0.1144 | | 2.5656 | 3.0 | 2130 | 2.5062 | 0.1399 | 0.0773 | 0.1213 | 0.1213 | | 2.3806 | 4.0 | 2840 | 2.5004 | 0.1431 | 0.0805 | 0.1243 | 0.1241 | | 2.157 | 5.0 | 3550 | 2.5008 | 0.1455 | 0.0808 | 0.1255 | 0.1254 | | 2.0458 | 6.0 | 4260 | 2.5313 | 0.1510 | 0.0846 | 0.1303 | 0.1301 | | 1.914 | 7.0 | 4970 | 2.5298 | 0.1585 | 0.0885 | 0.1361 | 0.1358 | | 1.7479 | 8.0 | 5680 | 2.5832 | 0.1508 | 0.0844 | 0.1292 | 0.1291 | | 1.6875 | 9.0 | 6390 | 2.5928 | 0.1493 | 0.0834 | 0.1281 | 0.1279 | | 1.574 | 10.0 | 7100 | 2.6364 | 0.1591 | 0.0885 | 0.1364 | 0.1363 | | 1.4554 | 11.0 | 7810 | 2.6978 | 0.1513 | 0.0849 | 0.1295 | 0.1295 | | 1.3909 | 12.0 | 8520 | 2.8099 | 0.1493 | 0.0837 | 0.1272 | 0.1270 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.5.1 - Tokenizers 0.12.1