trying to upload my first model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 281.55 +/- 12.93
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fa9d2fd40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fa9d2fdd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fa9d2fe60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fa9d2fef0>", "_build": "<function ActorCriticPolicy._build at 0x7f3fa9d2ff80>", "forward": "<function ActorCriticPolicy.forward at 0x7f3fa9d38050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fa9d380e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3fa9d38170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fa9d38200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fa9d38290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fa9d38320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3fa9d8c180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 4014080, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651907918.357424, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrBkrx7mqK69sx2tZS3nbC8xpK5dhW0NAAAgD8AAIA/wJfTPSyNWD6aVK6+PBPdvmEAlr1ScSO+AAAAAAAAAAAz87+68Si6P25Ul7w6ooI+KOyMu31SEL0AAAAAAAAAAGagPr5auJk/PMwcv40kAb+ic7S+tpjTvgAAAAAAAAAAAAaAvODUsz+js0i/OR0VvhT8gTxlZQo+AAAAAAAAAADN1jK95DCuP4b5M78R5N++7QOnPAf8Ob0AAAAAAAAAAI0f2j0UpJy6+LsqufH8lraQlRE6xnkHNgAAAAAAAAAAmnGOvft3sbymFgE+JSk0vaR3fT1Q4wI+AAAAAAAAgD/NaiS8hkyAPz6UI70Z+1e/OJ+hvJC/6zwAAAAAAAAAABpMCb17Crq6EjkuPU2687hxrxS55gLgtwAAgD8AAIA/M1vEPHuQ37ocT5q9l6k0vk4NhL3cVSQ/AACAPwAAAABtkBC+i7OAPyWrgr7B7RG/CiStvuIBrL0AAAAAAAAAAJOyET6vlYM/WGBnPopML7/SX6s+e4LFPQAAAAAAAAAAGiqevY0IsD8O+lW+JrD/vhsKOr40kgS+AAAAAAAAAADNWCe8aQsuPTPm6D4depa+5oerPgPBzj0AAAAAAAAAAHMd4L2XrFY+QTfLPWMUAb+QQ8i9GpCmPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEHaKVUOgcUCUhpRSlIwBbJRLoYwBdJRHQLvVkQVbiZR1fZQoaAZoCWgPQwjAWrVrgp1xQJSGlFKUaBVLvmgWR0C71ZapDNQkdX2UKGgGaAloD0MIoZ4+Ar+zcUCUhpRSlGgVS7NoFkdAu9WhkXk5qHV9lChoBmgJaA9DCKgZUkUxanFAlIaUUpRoFUu9aBZHQLvVruzhP0t1fZQoaAZoCWgPQwisHcU56uJxQJSGlFKUaBVLw2gWR0C71b9HlOoHdX2UKGgGaAloD0MIhJz3//GUcUCUhpRSlGgVS5RoFkdAu9XRIDoyK3V9lChoBmgJaA9DCHr9SXxuxnBAlIaUUpRoFUueaBZHQLvV7Md92HN1fZQoaAZoCWgPQwhXPsvzII9zQJSGlFKUaBVL1WgWR0C71fC925hCdX2UKGgGaAloD0MIevzepr/WckCUhpRSlGgVS6hoFkdAu9qdsoDxLHV9lChoBmgJaA9DCBxcOuY8w3JAlIaUUpRoFUu0aBZHQLvaqIwM6R11fZQoaAZoCWgPQwg6kzZVd7JwQJSGlFKUaBVLl2gWR0C72qpW/8EWdX2UKGgGaAloD0MI8aFES94RcECUhpRSlGgVS6VoFkdAu9qq6QNkOXV9lChoBmgJaA9DCP0Ux4FX925AlIaUUpRoFUuqaBZHQLva58P4EfV1fZQoaAZoCWgPQwjFq6xtyjpyQJSGlFKUaBVLuWgWR0C72uwOavzOdX2UKGgGaAloD0MIw9MrZZnAcECUhpRSlGgVS6hoFkdAu9rvbah6B3V9lChoBmgJaA9DCPtZLEUyy3BAlIaUUpRoFUu5aBZHQLvbCJ+DvmZ1fZQoaAZoCWgPQwhgHccPlUFyQJSGlFKUaBVLoGgWR0C72wu6unuRdX2UKGgGaAloD0MILjwvFZvScUCUhpRSlGgVS8VoFkdAu9sUBkqc3HV9lChoBmgJaA9DCGq932jHS3NAlIaUUpRoFUvMaBZHQLvbJM6RyOt1fZQoaAZoCWgPQwiowwq3vItxQJSGlFKUaBVLrGgWR0C72yptrKvFdX2UKGgGaAloD0MIbqetEQGHdECUhpRSlGgVS9poFkdAu9tAGjbi63V9lChoBmgJaA9DCDY7Un3nLXNAlIaUUpRoFUvGaBZHQLvbWjk+5e91fZQoaAZoCWgPQwhMNEjBE25yQJSGlFKUaBVLpGgWR0C721y66J66dX2UKGgGaAloD0MIMJ5BQ3/DcUCUhpRSlGgVS7VoFkdAu9tl0bLlm3V9lChoBmgJaA9DCNVd2QXDU3FAlIaUUpRoFUu7aBZHQLvbaPUaybB1fZQoaAZoCWgPQwjpYWh1slJwQJSGlFKUaBVLqGgWR0C722s1TBIndX2UKGgGaAloD0MIVrsmpLW9cUCUhpRSlGgVS65oFkdAu9tztKIznHV9lChoBmgJaA9DCBjNyvahWnBAlIaUUpRoFUvJaBZHQLvbkh60IC51fZQoaAZoCWgPQwgRHm0ccbByQJSGlFKUaBVLmmgWR0C726PGMn7YdX2UKGgGaAloD0MIrfnxlxbmckCUhpRSlGgVS7JoFkdAu9u+mvW6LHV9lChoBmgJaA9DCHjwEwfQVnNAlIaUUpRoFUvGaBZHQLvb1dmxt551fZQoaAZoCWgPQwhmTSzwVQt0QJSGlFKUaBVLvGgWR0C72+t78ejmdX2UKGgGaAloD0MIJa/OMeCPckCUhpRSlGgVS8FoFkdAu9v0tJ4B3nV9lChoBmgJaA9DCNvDXihgR3BAlIaUUpRoFUuwaBZHQLvb/90zTF51fZQoaAZoCWgPQwgMk6mCEQFyQJSGlFKUaBVLx2gWR0C73ASF9KEndX2UKGgGaAloD0MIBfnZyDVTcUCUhpRSlGgVS71oFkdAu9wJswco6XV9lChoBmgJaA9DCLfvUX/91XFAlIaUUpRoFUuSaBZHQLvcDsiSq2l1fZQoaAZoCWgPQwhwJqYL8XdwQJSGlFKUaBVLoGgWR0C73CBnSOR1dX2UKGgGaAloD0MIqDY4ET3ucUCUhpRSlGgVS8BoFkdAu9woMhHLBHV9lChoBmgJaA9DCCCWzRzSQnFAlIaUUpRoFUu+aBZHQLvcUHYYixF1fZQoaAZoCWgPQwiEDrqEg79yQJSGlFKUaBVLw2gWR0C73FNmDlHSdX2UKGgGaAloD0MIJ/c7FMV7c0CUhpRSlGgVS71oFkdAu9xSGetjkXV9lChoBmgJaA9DCB10CYfevnBAlIaUUpRoFUueaBZHQLvcVfnwG4Z1fZQoaAZoCWgPQwgbZmg8UX5zQJSGlFKUaBVLzGgWR0C73Gux0MgEdX2UKGgGaAloD0MIdELooEskckCUhpRSlGgVS65oFkdAu9x3Mqz7dnV9lChoBmgJaA9DCMnJxK1C/nJAlIaUUpRoFUvKaBZHQLvctggHNX51fZQoaAZoCWgPQwgzbJT1m8lxQJSGlFKUaBVLqmgWR0C73LmalUIcdX2UKGgGaAloD0MI4PPDCCGDckCUhpRSlGgVS7xoFkdAu9y6+10DEHV9lChoBmgJaA9DCGVQbXDiPnJAlIaUUpRoFUunaBZHQLvcv384xUN1fZQoaAZoCWgPQwi4j9yaNEdyQJSGlFKUaBVLvWgWR0C73ONbX6IndX2UKGgGaAloD0MIkGrY74lBc0CUhpRSlGgVS75oFkdAu9zpEhJRO3V9lChoBmgJaA9DCHsy/+ib9XFAlIaUUpRoFUu7aBZHQLvc710DEFZ1fZQoaAZoCWgPQwh4gCctXJZxQJSGlFKUaBVLxWgWR0C73PXZXdTHdX2UKGgGaAloD0MI/U/+7l2ec0CUhpRSlGgVS7toFkdAu90BPgvUSnV9lChoBmgJaA9DCPj7xWwJVHFAlIaUUpRoFUu1aBZHQLvdAipvP1N1fZQoaAZoCWgPQwhR+dfyymBwQJSGlFKUaBVLmWgWR0C73Qrz06HTdX2UKGgGaAloD0MIjx1U4jr9ckCUhpRSlGgVS6FoFkdAu90Qx1xKhHV9lChoBmgJaA9DCK4OgLir33FAlIaUUpRoFUunaBZHQLvdGuP3i711fZQoaAZoCWgPQwj4xDpVvs5yQJSGlFKUaBVLqmgWR0C73TyEQGwBdX2UKGgGaAloD0MIxY8xd22nckCUhpRSlGgVS8toFkdAu909qgyuZHV9lChoBmgJaA9DCHDpmPOMMHJAlIaUUpRoFUu0aBZHQLvdPaYeDFt1fZQoaAZoCWgPQwhIaqFk8ttvQJSGlFKUaBVLomgWR0C73Wr5hz/7dX2UKGgGaAloD0MIdJfEWZE+b0CUhpRSlGgVS6FoFkdAu91sGZ/kNnV9lChoBmgJaA9DCH8WS5E8h3FAlIaUUpRoFUu1aBZHQLvdiIX0oSd1fZQoaAZoCWgPQwisG++ODCJzQJSGlFKUaBVLwWgWR0C73ZP420iRdX2UKGgGaAloD0MIy6Kwi6J2cUCUhpRSlGgVS6VoFkdAu92hSiudPXV9lChoBmgJaA9DCEMDsWymy3JAlIaUUpRoFUuSaBZHQLvdpdZaFEl1fZQoaAZoCWgPQwhszVZechNxQJSGlFKUaBVLv2gWR0C73ciVGCqZdX2UKGgGaAloD0MIotEdxA6Wc0CUhpRSlGgVS8loFkdAu93IOZssQXV9lChoBmgJaA9DCLdELjjDWXBAlIaUUpRoFUuoaBZHQLvdy1QIldF1fZQoaAZoCWgPQwjFkQciy5dyQJSGlFKUaBVLvmgWR0C73c5tJnQIdX2UKGgGaAloD0MIoIhFDPuKcECUhpRSlGgVS6ZoFkdAu93P1f3N93V9lChoBmgJaA9DCOSCM/g7eXFAlIaUUpRoFUusaBZHQLvd4btqpLp1fZQoaAZoCWgPQwgOaVTgpAJyQJSGlFKUaBVLyWgWR0C73eYbjtG/dX2UKGgGaAloD0MI00uMZfq3ckCUhpRSlGgVS7JoFkdAu94M/QjUu3V9lChoBmgJaA9DCAjm6PF733FAlIaUUpRoFUu8aBZHQLveGagmJFd1fZQoaAZoCWgPQwiMZI9QswRyQJSGlFKUaBVLw2gWR0C73iH4GlhxdX2UKGgGaAloD0MI3lhQGBR3ckCUhpRSlGgVS5BoFkdAu949Jf6XSnV9lChoBmgJaA9DCPKYgcr4DnJAlIaUUpRoFUuNaBZHQLveSQO4G2V1fZQoaAZoCWgPQwhbBwd7UyVyQJSGlFKUaBVLvWgWR0C73kyaiKzidX2UKGgGaAloD0MI+FJ40Ox8c0CUhpRSlGgVS7hoFkdAu95k56t1ZHV9lChoBmgJaA9DCInt7gE693FAlIaUUpRoFUvRaBZHQLveZbX6InB1fZQoaAZoCWgPQwinWguzkGNyQJSGlFKUaBVLmGgWR0C73n1LJ0W/dX2UKGgGaAloD0MI9DXLZaMKcUCUhpRSlGgVS7hoFkdAu95/Mqz7dnV9lChoBmgJaA9DCEPmyqBaDnFAlIaUUpRoFUukaBZHQLvejW56MR91fZQoaAZoCWgPQwiNCpxsQw9yQJSGlFKUaBVLpGgWR0C73o7di2DydX2UKGgGaAloD0MIyJV6FkRgckCUhpRSlGgVS7xoFkdAu96htm+TNnV9lChoBmgJaA9DCBKDwMphAHJAlIaUUpRoFUu8aBZHQLvevPjGT9t1fZQoaAZoCWgPQwh9JCU9zH1yQJSGlFKUaBVLjmgWR0C73sCSq2jPdX2UKGgGaAloD0MIzLc+rHc5ckCUhpRSlGgVS5xoFkdAu97EdxQzlHV9lChoBmgJaA9DCFO0ci8wGHJAlIaUUpRoFUvAaBZHQLvexwTufEp1fZQoaAZoCWgPQwg3UUtzq1RzQJSGlFKUaBVL52gWR0C73tUka/ATdX2UKGgGaAloD0MIEywOZz4/c0CUhpRSlGgVS9FoFkdAu98awdKdx3V9lChoBmgJaA9DCGk50EMth3NAlIaUUpRoFUubaBZHQLvfHF72L511fZQoaAZoCWgPQwijj/mAAO9yQJSGlFKUaBVLwWgWR0C73yP/zasZdX2UKGgGaAloD0MI/x8nTNjqcUCUhpRSlGgVS7xoFkdAu98r6nBLwnV9lChoBmgJaA9DCAQDCB+Kq3BAlIaUUpRoFUuTaBZHQLvfLzf779B1fZQoaAZoCWgPQwgV5GcjVzByQJSGlFKUaBVLmmgWR0C730lkc0cfdX2UKGgGaAloD0MIgPRNmsa/cUCUhpRSlGgVS9ZoFkdAu99JBAv+O3V9lChoBmgJaA9DCI9wWvAiZ29AlIaUUpRoFUufaBZHQLvfThX8wYd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1968, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:327c04299c03cfba26b7cd58b70a5d2b46c1de87d50ccc988571d9f1682e811b
|
3 |
+
size 143983
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fa9d2fd40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fa9d2fdd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fa9d2fe60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fa9d2fef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3fa9d2ff80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3fa9d38050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fa9d380e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3fa9d38170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fa9d38200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fa9d38290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fa9d38320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3fa9d8c180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 4014080,
|
46 |
+
"_total_timesteps": 4000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651907918.357424,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrBkrx7mqK69sx2tZS3nbC8xpK5dhW0NAAAgD8AAIA/wJfTPSyNWD6aVK6+PBPdvmEAlr1ScSO+AAAAAAAAAAAz87+68Si6P25Ul7w6ooI+KOyMu31SEL0AAAAAAAAAAGagPr5auJk/PMwcv40kAb+ic7S+tpjTvgAAAAAAAAAAAAaAvODUsz+js0i/OR0VvhT8gTxlZQo+AAAAAAAAAADN1jK95DCuP4b5M78R5N++7QOnPAf8Ob0AAAAAAAAAAI0f2j0UpJy6+LsqufH8lraQlRE6xnkHNgAAAAAAAAAAmnGOvft3sbymFgE+JSk0vaR3fT1Q4wI+AAAAAAAAgD/NaiS8hkyAPz6UI70Z+1e/OJ+hvJC/6zwAAAAAAAAAABpMCb17Crq6EjkuPU2687hxrxS55gLgtwAAgD8AAIA/M1vEPHuQ37ocT5q9l6k0vk4NhL3cVSQ/AACAPwAAAABtkBC+i7OAPyWrgr7B7RG/CiStvuIBrL0AAAAAAAAAAJOyET6vlYM/WGBnPopML7/SX6s+e4LFPQAAAAAAAAAAGiqevY0IsD8O+lW+JrD/vhsKOr40kgS+AAAAAAAAAADNWCe8aQsuPTPm6D4depa+5oerPgPBzj0AAAAAAAAAAHMd4L2XrFY+QTfLPWMUAb+QQ8i9GpCmPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEHaKVUOgcUCUhpRSlIwBbJRLoYwBdJRHQLvVkQVbiZR1fZQoaAZoCWgPQwjAWrVrgp1xQJSGlFKUaBVLvmgWR0C71ZapDNQkdX2UKGgGaAloD0MIoZ4+Ar+zcUCUhpRSlGgVS7NoFkdAu9WhkXk5qHV9lChoBmgJaA9DCKgZUkUxanFAlIaUUpRoFUu9aBZHQLvVruzhP0t1fZQoaAZoCWgPQwisHcU56uJxQJSGlFKUaBVLw2gWR0C71b9HlOoHdX2UKGgGaAloD0MIhJz3//GUcUCUhpRSlGgVS5RoFkdAu9XRIDoyK3V9lChoBmgJaA9DCHr9SXxuxnBAlIaUUpRoFUueaBZHQLvV7Md92HN1fZQoaAZoCWgPQwhXPsvzII9zQJSGlFKUaBVL1WgWR0C71fC925hCdX2UKGgGaAloD0MIevzepr/WckCUhpRSlGgVS6hoFkdAu9qdsoDxLHV9lChoBmgJaA9DCBxcOuY8w3JAlIaUUpRoFUu0aBZHQLvaqIwM6R11fZQoaAZoCWgPQwg6kzZVd7JwQJSGlFKUaBVLl2gWR0C72qpW/8EWdX2UKGgGaAloD0MI8aFES94RcECUhpRSlGgVS6VoFkdAu9qq6QNkOXV9lChoBmgJaA9DCP0Ux4FX925AlIaUUpRoFUuqaBZHQLva58P4EfV1fZQoaAZoCWgPQwjFq6xtyjpyQJSGlFKUaBVLuWgWR0C72uwOavzOdX2UKGgGaAloD0MIw9MrZZnAcECUhpRSlGgVS6hoFkdAu9rvbah6B3V9lChoBmgJaA9DCPtZLEUyy3BAlIaUUpRoFUu5aBZHQLvbCJ+DvmZ1fZQoaAZoCWgPQwhgHccPlUFyQJSGlFKUaBVLoGgWR0C72wu6unuRdX2UKGgGaAloD0MILjwvFZvScUCUhpRSlGgVS8VoFkdAu9sUBkqc3HV9lChoBmgJaA9DCGq932jHS3NAlIaUUpRoFUvMaBZHQLvbJM6RyOt1fZQoaAZoCWgPQwiowwq3vItxQJSGlFKUaBVLrGgWR0C72yptrKvFdX2UKGgGaAloD0MIbqetEQGHdECUhpRSlGgVS9poFkdAu9tAGjbi63V9lChoBmgJaA9DCDY7Un3nLXNAlIaUUpRoFUvGaBZHQLvbWjk+5e91fZQoaAZoCWgPQwhMNEjBE25yQJSGlFKUaBVLpGgWR0C721y66J66dX2UKGgGaAloD0MIMJ5BQ3/DcUCUhpRSlGgVS7VoFkdAu9tl0bLlm3V9lChoBmgJaA9DCNVd2QXDU3FAlIaUUpRoFUu7aBZHQLvbaPUaybB1fZQoaAZoCWgPQwjpYWh1slJwQJSGlFKUaBVLqGgWR0C722s1TBIndX2UKGgGaAloD0MIVrsmpLW9cUCUhpRSlGgVS65oFkdAu9tztKIznHV9lChoBmgJaA9DCBjNyvahWnBAlIaUUpRoFUvJaBZHQLvbkh60IC51fZQoaAZoCWgPQwgRHm0ccbByQJSGlFKUaBVLmmgWR0C726PGMn7YdX2UKGgGaAloD0MIrfnxlxbmckCUhpRSlGgVS7JoFkdAu9u+mvW6LHV9lChoBmgJaA9DCHjwEwfQVnNAlIaUUpRoFUvGaBZHQLvb1dmxt551fZQoaAZoCWgPQwhmTSzwVQt0QJSGlFKUaBVLvGgWR0C72+t78ejmdX2UKGgGaAloD0MIJa/OMeCPckCUhpRSlGgVS8FoFkdAu9v0tJ4B3nV9lChoBmgJaA9DCNvDXihgR3BAlIaUUpRoFUuwaBZHQLvb/90zTF51fZQoaAZoCWgPQwgMk6mCEQFyQJSGlFKUaBVLx2gWR0C73ASF9KEndX2UKGgGaAloD0MIBfnZyDVTcUCUhpRSlGgVS71oFkdAu9wJswco6XV9lChoBmgJaA9DCLfvUX/91XFAlIaUUpRoFUuSaBZHQLvcDsiSq2l1fZQoaAZoCWgPQwhwJqYL8XdwQJSGlFKUaBVLoGgWR0C73CBnSOR1dX2UKGgGaAloD0MIqDY4ET3ucUCUhpRSlGgVS8BoFkdAu9woMhHLBHV9lChoBmgJaA9DCCCWzRzSQnFAlIaUUpRoFUu+aBZHQLvcUHYYixF1fZQoaAZoCWgPQwiEDrqEg79yQJSGlFKUaBVLw2gWR0C73FNmDlHSdX2UKGgGaAloD0MIJ/c7FMV7c0CUhpRSlGgVS71oFkdAu9xSGetjkXV9lChoBmgJaA9DCB10CYfevnBAlIaUUpRoFUueaBZHQLvcVfnwG4Z1fZQoaAZoCWgPQwgbZmg8UX5zQJSGlFKUaBVLzGgWR0C73Gux0MgEdX2UKGgGaAloD0MIdELooEskckCUhpRSlGgVS65oFkdAu9x3Mqz7dnV9lChoBmgJaA9DCMnJxK1C/nJAlIaUUpRoFUvKaBZHQLvctggHNX51fZQoaAZoCWgPQwgzbJT1m8lxQJSGlFKUaBVLqmgWR0C73LmalUIcdX2UKGgGaAloD0MI4PPDCCGDckCUhpRSlGgVS7xoFkdAu9y6+10DEHV9lChoBmgJaA9DCGVQbXDiPnJAlIaUUpRoFUunaBZHQLvcv384xUN1fZQoaAZoCWgPQwi4j9yaNEdyQJSGlFKUaBVLvWgWR0C73ONbX6IndX2UKGgGaAloD0MIkGrY74lBc0CUhpRSlGgVS75oFkdAu9zpEhJRO3V9lChoBmgJaA9DCHsy/+ib9XFAlIaUUpRoFUu7aBZHQLvc710DEFZ1fZQoaAZoCWgPQwh4gCctXJZxQJSGlFKUaBVLxWgWR0C73PXZXdTHdX2UKGgGaAloD0MI/U/+7l2ec0CUhpRSlGgVS7toFkdAu90BPgvUSnV9lChoBmgJaA9DCPj7xWwJVHFAlIaUUpRoFUu1aBZHQLvdAipvP1N1fZQoaAZoCWgPQwhR+dfyymBwQJSGlFKUaBVLmWgWR0C73Qrz06HTdX2UKGgGaAloD0MIjx1U4jr9ckCUhpRSlGgVS6FoFkdAu90Qx1xKhHV9lChoBmgJaA9DCK4OgLir33FAlIaUUpRoFUunaBZHQLvdGuP3i711fZQoaAZoCWgPQwj4xDpVvs5yQJSGlFKUaBVLqmgWR0C73TyEQGwBdX2UKGgGaAloD0MIxY8xd22nckCUhpRSlGgVS8toFkdAu909qgyuZHV9lChoBmgJaA9DCHDpmPOMMHJAlIaUUpRoFUu0aBZHQLvdPaYeDFt1fZQoaAZoCWgPQwhIaqFk8ttvQJSGlFKUaBVLomgWR0C73Wr5hz/7dX2UKGgGaAloD0MIdJfEWZE+b0CUhpRSlGgVS6FoFkdAu91sGZ/kNnV9lChoBmgJaA9DCH8WS5E8h3FAlIaUUpRoFUu1aBZHQLvdiIX0oSd1fZQoaAZoCWgPQwisG++ODCJzQJSGlFKUaBVLwWgWR0C73ZP420iRdX2UKGgGaAloD0MIy6Kwi6J2cUCUhpRSlGgVS6VoFkdAu92hSiudPXV9lChoBmgJaA9DCEMDsWymy3JAlIaUUpRoFUuSaBZHQLvdpdZaFEl1fZQoaAZoCWgPQwhszVZechNxQJSGlFKUaBVLv2gWR0C73ciVGCqZdX2UKGgGaAloD0MIotEdxA6Wc0CUhpRSlGgVS8loFkdAu93IOZssQXV9lChoBmgJaA9DCLdELjjDWXBAlIaUUpRoFUuoaBZHQLvdy1QIldF1fZQoaAZoCWgPQwjFkQciy5dyQJSGlFKUaBVLvmgWR0C73c5tJnQIdX2UKGgGaAloD0MIoIhFDPuKcECUhpRSlGgVS6ZoFkdAu93P1f3N93V9lChoBmgJaA9DCOSCM/g7eXFAlIaUUpRoFUusaBZHQLvd4btqpLp1fZQoaAZoCWgPQwgOaVTgpAJyQJSGlFKUaBVLyWgWR0C73eYbjtG/dX2UKGgGaAloD0MI00uMZfq3ckCUhpRSlGgVS7JoFkdAu94M/QjUu3V9lChoBmgJaA9DCAjm6PF733FAlIaUUpRoFUu8aBZHQLveGagmJFd1fZQoaAZoCWgPQwiMZI9QswRyQJSGlFKUaBVLw2gWR0C73iH4GlhxdX2UKGgGaAloD0MI3lhQGBR3ckCUhpRSlGgVS5BoFkdAu949Jf6XSnV9lChoBmgJaA9DCPKYgcr4DnJAlIaUUpRoFUuNaBZHQLveSQO4G2V1fZQoaAZoCWgPQwhbBwd7UyVyQJSGlFKUaBVLvWgWR0C73kyaiKzidX2UKGgGaAloD0MI+FJ40Ox8c0CUhpRSlGgVS7hoFkdAu95k56t1ZHV9lChoBmgJaA9DCInt7gE693FAlIaUUpRoFUvRaBZHQLveZbX6InB1fZQoaAZoCWgPQwinWguzkGNyQJSGlFKUaBVLmGgWR0C73n1LJ0W/dX2UKGgGaAloD0MI9DXLZaMKcUCUhpRSlGgVS7hoFkdAu95/Mqz7dnV9lChoBmgJaA9DCEPmyqBaDnFAlIaUUpRoFUukaBZHQLvejW56MR91fZQoaAZoCWgPQwiNCpxsQw9yQJSGlFKUaBVLpGgWR0C73o7di2DydX2UKGgGaAloD0MIyJV6FkRgckCUhpRSlGgVS7xoFkdAu96htm+TNnV9lChoBmgJaA9DCBKDwMphAHJAlIaUUpRoFUu8aBZHQLvevPjGT9t1fZQoaAZoCWgPQwh9JCU9zH1yQJSGlFKUaBVLjmgWR0C73sCSq2jPdX2UKGgGaAloD0MIzLc+rHc5ckCUhpRSlGgVS5xoFkdAu97EdxQzlHV9lChoBmgJaA9DCFO0ci8wGHJAlIaUUpRoFUvAaBZHQLvexwTufEp1fZQoaAZoCWgPQwg3UUtzq1RzQJSGlFKUaBVL52gWR0C73tUka/ATdX2UKGgGaAloD0MIEywOZz4/c0CUhpRSlGgVS9FoFkdAu98awdKdx3V9lChoBmgJaA9DCGk50EMth3NAlIaUUpRoFUubaBZHQLvfHF72L511fZQoaAZoCWgPQwijj/mAAO9yQJSGlFKUaBVLwWgWR0C73yP/zasZdX2UKGgGaAloD0MI/x8nTNjqcUCUhpRSlGgVS7xoFkdAu98r6nBLwnV9lChoBmgJaA9DCAQDCB+Kq3BAlIaUUpRoFUuTaBZHQLvfLzf779B1fZQoaAZoCWgPQwgV5GcjVzByQJSGlFKUaBVLmmgWR0C730lkc0cfdX2UKGgGaAloD0MIgPRNmsa/cUCUhpRSlGgVS9ZoFkdAu99JBAv+O3V9lChoBmgJaA9DCI9wWvAiZ29AlIaUUpRoFUufaBZHQLvfThX8wYd1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1968,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3315565174c4fe24f13a5e7c91facc83cc614641a26acb6544520836bbb59e0f
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7920550cd37af99682ec73a2d9d5019fd1ca344963886fe974f24fa4c67b1a6
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b624f70480a3810a37ae4bcbd387039bf877bb7f23753962cf66963e4bb6a0c
|
3 |
+
size 199687
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 281.55323083734095, "std_reward": 12.92734753799479, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T07:59:11.727887"}
|