--- license: mit --- # Jamba 8xMoe (Slerp Merge) This model has been merged from [Jamba](https://huggingface.co/ai21labs/Jamba-v0.1) a 52B parameter model with 16 experts. It used an accumulative SLERP to merge experts from 16 to 8. 4 Bit Inference Code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch model_id = "isemmanuelolowe/Jamba-8xMoE_slerp" tokenizer = AutoTokenizer.from_pretrained(model_id) quantization_config = BitsAndBytesConfig( load_in_4bit=True, # load_in_8bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, llm_int8_skip_modules=["mamba"], ) model = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", quantization_config=quantization_config ) input_ids = tokenizer("Here is how to do bubble sort\n```python\n", return_tensors="pt")["input_ids"].to("cuda") out = model.generate(input_ids, max_new_tokens=256, temperature=0, repetition_penalty=1) print(tokenizer.batch_decode(out, skip_special_tokens=True)) ``` OUTPUT: Here is how to do bubble sort ```bash ['Here is how to do bubble sort\n```python\ndef bubble_sort(array):\n for i in 0, len(array):\n for j in 0, len(array):\n if a[i] < a[j]\n a[i], a[j]\n\n```\n\n\n\n\n\n\n'] ```