isemmanuelolowe commited on
Commit
99e308e
1 Parent(s): 473c4a2

Upload JambaForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "tmp/Jamba-9B",
3
+ "architectures": [
4
+ "JambaForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "attn_layer_offset": 4,
8
+ "attn_layer_period": 8,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_jamba.JambaConfig",
11
+ "AutoModel": "modeling_jamba.JambaModel",
12
+ "AutoModelForCausalLM": "modeling_jamba.JambaForCausalLM",
13
+ "AutoModelForSequenceClassification": "model.JambaForSequenceClassification"
14
+ },
15
+ "bos_token_id": 1,
16
+ "calc_logits_for_entire_prompt": false,
17
+ "eos_token_id": 2,
18
+ "expert_layer_offset": 1,
19
+ "expert_layer_period": 2,
20
+ "hidden_act": "silu",
21
+ "hidden_size": 4096,
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 14336,
24
+ "mamba_conv_bias": true,
25
+ "mamba_d_conv": 4,
26
+ "mamba_d_state": 16,
27
+ "mamba_dt_rank": 256,
28
+ "mamba_expand": 2,
29
+ "mamba_inner_layernorms": true,
30
+ "mamba_proj_bias": false,
31
+ "model_type": "jamba",
32
+ "n_ctx": 262144,
33
+ "num_attention_heads": 32,
34
+ "num_experts": 1,
35
+ "num_experts_per_tok": 1,
36
+ "num_hidden_layers": 32,
37
+ "num_key_value_heads": 8,
38
+ "output_router_logits": false,
39
+ "pad_token_id": 0,
40
+ "rms_norm_eps": 1e-06,
41
+ "router_aux_loss_coef": 0.001,
42
+ "sliding_window": null,
43
+ "tie_word_embeddings": false,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.40.0",
46
+ "use_cache": true,
47
+ "use_mamba_kernels": true,
48
+ "vocab_size": 65536
49
+ }
configuration_jamba.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Jamba model configuration"""
16
+ import math
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class JambaConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a
28
+ Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration
29
+ with the defaults will yield a similar configuration to that of the jamba-small architecture.
30
+
31
+ [ai21labs/jamba-small](https://huggingface.co/ai21labs/Jamba-v0.1)
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 65536):
39
+ Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`JambaModel`]
41
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
42
+ Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
43
+ model has a output word embedding layer.
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 14336):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ num_key_value_heads (`int`, *optional*, defaults to 8):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
60
+ The non-linear activation function (function or string) in the decoder.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ calc_logits_for_entire_prompt (`bool`, *optional*, defaults to `False`):
69
+ Whether or not to calculate logits for entire prompt during generation. If `False`, only the logits of the
70
+ last prompt token will be calculated, which are the only logits needed for generation. For long sequences,
71
+ the logits for the entire sequence may use a lot of memory so setting `calc_logits_for_entire_prompt=False`
72
+ will reduce memory footprint significantly.
73
+ Note: some generation features may not be available if this is set to `False`.
74
+ output_router_logits (`bool`, *optional*, defaults to `False`):
75
+ Whether or not the router logits should be returned by the model. Enabling this will also
76
+ allow the model to output the auxiliary loss. See [here]() for more details
77
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
78
+ The aux loss factor for the total loss.
79
+ pad_token_id (`int`, *optional*, defaults to 0):
80
+ The id of the padding token.
81
+ bos_token_id (`int`, *optional*, defaults to 1):
82
+ The id of the "beginning-of-sequence" token.
83
+ eos_token_id (`int`, *optional*, defaults to 2):
84
+ The id of the "end-of-sequence" token.
85
+ sliding_window (`int`, *optional*):
86
+ Sliding window attention window size. If not specified, will default to `None`.
87
+ n_ctx (`int`, *optional*, defaults to 262144):
88
+ This value doesn't have any real effect. The maximum sequence length that this model is intended to be
89
+ used with. It can be used with longer sequences, but performance may degrade.
90
+ attention_dropout (`float`, *optional*, defaults to 0.0):
91
+ The dropout ratio for the attention probabilities.
92
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
93
+ The number of experts to root per-token, can be also interpreted as the `top-p` routing
94
+ parameter
95
+ num_experts (`int`, *optional*, defaults to 16):
96
+ Number of experts per Sparse MLP layer.
97
+ expert_layer_period (`int`, *optional*, defaults to 2):
98
+ Once in this many layers, we will have an expert layer
99
+ expert_layer_offset (`int`, *optional*, defaults to 1):
100
+ The first layer index that contains an expert mlp layer
101
+ attn_layer_period (`int`, *optional*, defaults to 8):
102
+ Once in this many layers, we will have a vanilla attention layer
103
+ attn_layer_offset (`int`, *optional*, defaults to 4):
104
+ The first layer index that contains a vanilla attention mlp layer
105
+ use_mamba_kernels (`bool`, *optional*, defaults to `True`):
106
+ Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
107
+ `causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if
108
+ `True` and kernels are not available
109
+ mamba_d_state (`int`, *optional*, defaults to 16):
110
+ The dimension the mamba state space latents
111
+ mamba_d_conv (`int`, *optional*, defaults to 4):
112
+ The size of the mamba convolution kernel
113
+ mamba_expand (`int`, *optional*, defaults to 2):
114
+ Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
115
+ mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
116
+ Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
117
+ mamba_conv_bias (`bool`, *optional*, defaults to `True`):
118
+ Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
119
+ mamba_proj_bias (`bool`, *optional*, defaults to `False`):
120
+ Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
121
+ mamba_inner_layernorms (`bool`, *optional*, defaults to `True`):
122
+ Flag indicating whether or not to apply layernorms to internal mamba activations
123
+
124
+ """
125
+
126
+ model_type = "jamba"
127
+ keys_to_ignore_at_inference = ["past_key_values"]
128
+
129
+ def __init__(
130
+ self,
131
+ vocab_size=65536,
132
+ tie_word_embeddings=False,
133
+ hidden_size=4096,
134
+ intermediate_size=14336,
135
+ num_hidden_layers=32,
136
+ num_attention_heads=32,
137
+ num_key_value_heads=8,
138
+ hidden_act="silu",
139
+ initializer_range=0.02,
140
+ rms_norm_eps=1e-6,
141
+ use_cache=True,
142
+ calc_logits_for_entire_prompt=False,
143
+ output_router_logits=False,
144
+ router_aux_loss_coef=0.001,
145
+ pad_token_id=0,
146
+ bos_token_id=1,
147
+ eos_token_id=2,
148
+ sliding_window=None,
149
+ n_ctx=262144,
150
+ attention_dropout=0.0,
151
+ num_experts_per_tok=2,
152
+ num_experts=16,
153
+ expert_layer_period=2,
154
+ expert_layer_offset=1,
155
+ attn_layer_period=8,
156
+ attn_layer_offset=4,
157
+ use_mamba_kernels=True,
158
+ mamba_d_state=16,
159
+ mamba_d_conv=4,
160
+ mamba_expand=2,
161
+ mamba_dt_rank="auto",
162
+ mamba_conv_bias=True,
163
+ mamba_proj_bias=False,
164
+ mamba_inner_layernorms=True,
165
+ **kwargs,
166
+ ):
167
+ self.vocab_size = vocab_size
168
+ self.tie_word_embeddings = tie_word_embeddings
169
+ self.hidden_size = hidden_size
170
+ self.intermediate_size = intermediate_size
171
+ self.num_hidden_layers = num_hidden_layers
172
+ self.num_attention_heads = num_attention_heads
173
+ self.sliding_window = sliding_window
174
+ self.n_ctx = n_ctx
175
+ self.attention_dropout = attention_dropout
176
+
177
+ # for backward compatibility
178
+ if num_key_value_heads is None:
179
+ num_key_value_heads = num_attention_heads
180
+
181
+ self.num_key_value_heads = num_key_value_heads
182
+ self.hidden_act = hidden_act
183
+ self.initializer_range = initializer_range
184
+ self.rms_norm_eps = rms_norm_eps
185
+
186
+ self.use_cache = use_cache
187
+ self.calc_logits_for_entire_prompt = calc_logits_for_entire_prompt
188
+ self.output_router_logits = output_router_logits
189
+ self.router_aux_loss_coef = router_aux_loss_coef
190
+
191
+ self.num_experts_per_tok = num_experts_per_tok
192
+ self.num_experts = num_experts
193
+ self.expert_layer_period = expert_layer_period
194
+ self.expert_layer_offset = expert_layer_offset
195
+ self.attn_layer_period = attn_layer_period
196
+ self.attn_layer_offset = attn_layer_offset
197
+
198
+ self.use_mamba_kernels = use_mamba_kernels
199
+ self.mamba_d_state = mamba_d_state
200
+ self.mamba_d_conv = mamba_d_conv
201
+ self.mamba_expand = mamba_expand
202
+ self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
203
+ self.mamba_conv_bias = mamba_conv_bias
204
+ self.mamba_proj_bias = mamba_proj_bias
205
+ self.mamba_inner_layernorms = mamba_inner_layernorms
206
+
207
+ super().__init__(
208
+ pad_token_id=pad_token_id,
209
+ bos_token_id=bos_token_id,
210
+ eos_token_id=eos_token_id,
211
+ tie_word_embeddings=tie_word_embeddings,
212
+ **kwargs,
213
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.40.0"
7
+ }
model-00001-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f1ca163cbb1de124b8374ead61b1132319ee16afcf42d808d6930da4831e44c
3
+ size 4872711632
model-00002-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bb51cfec2cf96c2ff7eecaa78830192469ed2fd2637b2c7207bf6c5210639ef
3
+ size 4955581384
model-00003-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d335c94d8e7e1c522c05119dfed4c2df0238edb5ca035cf5f92fbbfb5025fd3
3
+ size 4905578552
model-00004-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bb041ad7b35c1fee34096b00fec8ce0e6e421cb66c09dc1347d319450ce588d
3
+ size 4974162768
model-00005-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31f2cd542050b2cb196f4c39f438a53a9991acf7f6e7c57f0632c01ed1824d43
3
+ size 4905578608
model-00006-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91fdf999508a3bc72e340a0bdc2b98d36db9c633b2b5c252f6c36e63a841f183
3
+ size 4974162768
model-00007-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e80e97f4d63be369e7e5c83df16b17db9b663053e94aadee1991f89ac2a5a29
3
+ size 4905578608
model-00008-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98e40e6f78b6cf87c77ec20f056d723ef95648837d2f1580b92507b8c491e9d7
3
+ size 2669465264
model.safetensors.index.json ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 37162761728
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00008-of-00008.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00008.safetensors",
8
+ "model.final_layernorm.weight": "model-00008-of-00008.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00008.safetensors",
10
+ "model.layers.0.mamba.A_log": "model-00001-of-00008.safetensors",
11
+ "model.layers.0.mamba.B_layernorm.weight": "model-00001-of-00008.safetensors",
12
+ "model.layers.0.mamba.C_layernorm.weight": "model-00001-of-00008.safetensors",
13
+ "model.layers.0.mamba.D": "model-00001-of-00008.safetensors",
14
+ "model.layers.0.mamba.conv1d.bias": "model-00001-of-00008.safetensors",
15
+ "model.layers.0.mamba.conv1d.weight": "model-00001-of-00008.safetensors",
16
+ "model.layers.0.mamba.dt_layernorm.weight": "model-00001-of-00008.safetensors",
17
+ "model.layers.0.mamba.dt_proj.bias": "model-00001-of-00008.safetensors",
18
+ "model.layers.0.mamba.dt_proj.weight": "model-00001-of-00008.safetensors",
19
+ "model.layers.0.mamba.in_proj.weight": "model-00001-of-00008.safetensors",
20
+ "model.layers.0.mamba.out_proj.weight": "model-00001-of-00008.safetensors",
21
+ "model.layers.0.mamba.x_proj.weight": "model-00001-of-00008.safetensors",
22
+ "model.layers.0.moe.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
23
+ "model.layers.0.moe.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
24
+ "model.layers.0.moe.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
25
+ "model.layers.0.pre_moe_layernorm.weight": "model-00001-of-00008.safetensors",
26
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00008.safetensors",
27
+ "model.layers.1.mamba.A_log": "model-00001-of-00008.safetensors",
28
+ "model.layers.1.mamba.B_layernorm.weight": "model-00001-of-00008.safetensors",
29
+ "model.layers.1.mamba.C_layernorm.weight": "model-00001-of-00008.safetensors",
30
+ "model.layers.1.mamba.D": "model-00001-of-00008.safetensors",
31
+ "model.layers.1.mamba.conv1d.bias": "model-00001-of-00008.safetensors",
32
+ "model.layers.1.mamba.conv1d.weight": "model-00001-of-00008.safetensors",
33
+ "model.layers.1.mamba.dt_layernorm.weight": "model-00001-of-00008.safetensors",
34
+ "model.layers.1.mamba.dt_proj.bias": "model-00001-of-00008.safetensors",
35
+ "model.layers.1.mamba.dt_proj.weight": "model-00001-of-00008.safetensors",
36
+ "model.layers.1.mamba.in_proj.weight": "model-00001-of-00008.safetensors",
37
+ "model.layers.1.mamba.out_proj.weight": "model-00001-of-00008.safetensors",
38
+ "model.layers.1.mamba.x_proj.weight": "model-00001-of-00008.safetensors",
39
+ "model.layers.1.moe.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
40
+ "model.layers.1.moe.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
41
+ "model.layers.1.moe.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
42
+ "model.layers.1.pre_moe_layernorm.weight": "model-00001-of-00008.safetensors",
43
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00008.safetensors",
44
+ "model.layers.10.mamba.A_log": "model-00003-of-00008.safetensors",
45
+ "model.layers.10.mamba.B_layernorm.weight": "model-00003-of-00008.safetensors",
46
+ "model.layers.10.mamba.C_layernorm.weight": "model-00003-of-00008.safetensors",
47
+ "model.layers.10.mamba.D": "model-00003-of-00008.safetensors",
48
+ "model.layers.10.mamba.conv1d.bias": "model-00003-of-00008.safetensors",
49
+ "model.layers.10.mamba.conv1d.weight": "model-00003-of-00008.safetensors",
50
+ "model.layers.10.mamba.dt_layernorm.weight": "model-00003-of-00008.safetensors",
51
+ "model.layers.10.mamba.dt_proj.bias": "model-00003-of-00008.safetensors",
52
+ "model.layers.10.mamba.dt_proj.weight": "model-00003-of-00008.safetensors",
53
+ "model.layers.10.mamba.in_proj.weight": "model-00003-of-00008.safetensors",
54
+ "model.layers.10.mamba.out_proj.weight": "model-00003-of-00008.safetensors",
55
+ "model.layers.10.mamba.x_proj.weight": "model-00003-of-00008.safetensors",
56
+ "model.layers.10.moe.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
57
+ "model.layers.10.moe.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
58
+ "model.layers.10.moe.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
59
+ "model.layers.10.pre_moe_layernorm.weight": "model-00003-of-00008.safetensors",
60
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00008.safetensors",
61
+ "model.layers.11.mamba.A_log": "model-00003-of-00008.safetensors",
62
+ "model.layers.11.mamba.B_layernorm.weight": "model-00003-of-00008.safetensors",
63
+ "model.layers.11.mamba.C_layernorm.weight": "model-00003-of-00008.safetensors",
64
+ "model.layers.11.mamba.D": "model-00003-of-00008.safetensors",
65
+ "model.layers.11.mamba.conv1d.bias": "model-00003-of-00008.safetensors",
66
+ "model.layers.11.mamba.conv1d.weight": "model-00003-of-00008.safetensors",
67
+ "model.layers.11.mamba.dt_layernorm.weight": "model-00003-of-00008.safetensors",
68
+ "model.layers.11.mamba.dt_proj.bias": "model-00003-of-00008.safetensors",
69
+ "model.layers.11.mamba.dt_proj.weight": "model-00003-of-00008.safetensors",
70
+ "model.layers.11.mamba.in_proj.weight": "model-00003-of-00008.safetensors",
71
+ "model.layers.11.mamba.out_proj.weight": "model-00003-of-00008.safetensors",
72
+ "model.layers.11.mamba.x_proj.weight": "model-00003-of-00008.safetensors",
73
+ "model.layers.11.moe.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
74
+ "model.layers.11.moe.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
75
+ "model.layers.11.moe.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
76
+ "model.layers.11.pre_moe_layernorm.weight": "model-00003-of-00008.safetensors",
77
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00008.safetensors",
78
+ "model.layers.12.moe.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
79
+ "model.layers.12.moe.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
80
+ "model.layers.12.moe.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
81
+ "model.layers.12.pre_moe_layernorm.weight": "model-00004-of-00008.safetensors",
82
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
83
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
84
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
85
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
86
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00008.safetensors",
87
+ "model.layers.13.mamba.A_log": "model-00004-of-00008.safetensors",
88
+ "model.layers.13.mamba.B_layernorm.weight": "model-00004-of-00008.safetensors",
89
+ "model.layers.13.mamba.C_layernorm.weight": "model-00004-of-00008.safetensors",
90
+ "model.layers.13.mamba.D": "model-00004-of-00008.safetensors",
91
+ "model.layers.13.mamba.conv1d.bias": "model-00004-of-00008.safetensors",
92
+ "model.layers.13.mamba.conv1d.weight": "model-00004-of-00008.safetensors",
93
+ "model.layers.13.mamba.dt_layernorm.weight": "model-00004-of-00008.safetensors",
94
+ "model.layers.13.mamba.dt_proj.bias": "model-00004-of-00008.safetensors",
95
+ "model.layers.13.mamba.dt_proj.weight": "model-00004-of-00008.safetensors",
96
+ "model.layers.13.mamba.in_proj.weight": "model-00004-of-00008.safetensors",
97
+ "model.layers.13.mamba.out_proj.weight": "model-00004-of-00008.safetensors",
98
+ "model.layers.13.mamba.x_proj.weight": "model-00004-of-00008.safetensors",
99
+ "model.layers.13.moe.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
100
+ "model.layers.13.moe.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
101
+ "model.layers.13.moe.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
102
+ "model.layers.13.pre_moe_layernorm.weight": "model-00004-of-00008.safetensors",
103
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00008.safetensors",
104
+ "model.layers.14.mamba.A_log": "model-00004-of-00008.safetensors",
105
+ "model.layers.14.mamba.B_layernorm.weight": "model-00004-of-00008.safetensors",
106
+ "model.layers.14.mamba.C_layernorm.weight": "model-00004-of-00008.safetensors",
107
+ "model.layers.14.mamba.D": "model-00004-of-00008.safetensors",
108
+ "model.layers.14.mamba.conv1d.bias": "model-00004-of-00008.safetensors",
109
+ "model.layers.14.mamba.conv1d.weight": "model-00004-of-00008.safetensors",
110
+ "model.layers.14.mamba.dt_layernorm.weight": "model-00004-of-00008.safetensors",
111
+ "model.layers.14.mamba.dt_proj.bias": "model-00004-of-00008.safetensors",
112
+ "model.layers.14.mamba.dt_proj.weight": "model-00004-of-00008.safetensors",
113
+ "model.layers.14.mamba.in_proj.weight": "model-00004-of-00008.safetensors",
114
+ "model.layers.14.mamba.out_proj.weight": "model-00004-of-00008.safetensors",
115
+ "model.layers.14.mamba.x_proj.weight": "model-00004-of-00008.safetensors",
116
+ "model.layers.14.moe.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
117
+ "model.layers.14.moe.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
118
+ "model.layers.14.moe.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
119
+ "model.layers.14.pre_moe_layernorm.weight": "model-00004-of-00008.safetensors",
120
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00008.safetensors",
121
+ "model.layers.15.mamba.A_log": "model-00004-of-00008.safetensors",
122
+ "model.layers.15.mamba.B_layernorm.weight": "model-00004-of-00008.safetensors",
123
+ "model.layers.15.mamba.C_layernorm.weight": "model-00004-of-00008.safetensors",
124
+ "model.layers.15.mamba.D": "model-00004-of-00008.safetensors",
125
+ "model.layers.15.mamba.conv1d.bias": "model-00004-of-00008.safetensors",
126
+ "model.layers.15.mamba.conv1d.weight": "model-00004-of-00008.safetensors",
127
+ "model.layers.15.mamba.dt_layernorm.weight": "model-00004-of-00008.safetensors",
128
+ "model.layers.15.mamba.dt_proj.bias": "model-00004-of-00008.safetensors",
129
+ "model.layers.15.mamba.dt_proj.weight": "model-00004-of-00008.safetensors",
130
+ "model.layers.15.mamba.in_proj.weight": "model-00004-of-00008.safetensors",
131
+ "model.layers.15.mamba.out_proj.weight": "model-00004-of-00008.safetensors",
132
+ "model.layers.15.mamba.x_proj.weight": "model-00004-of-00008.safetensors",
133
+ "model.layers.15.moe.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
134
+ "model.layers.15.moe.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
135
+ "model.layers.15.moe.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
136
+ "model.layers.15.pre_moe_layernorm.weight": "model-00004-of-00008.safetensors",
137
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00008.safetensors",
138
+ "model.layers.16.mamba.A_log": "model-00004-of-00008.safetensors",
139
+ "model.layers.16.mamba.B_layernorm.weight": "model-00004-of-00008.safetensors",
140
+ "model.layers.16.mamba.C_layernorm.weight": "model-00004-of-00008.safetensors",
141
+ "model.layers.16.mamba.D": "model-00004-of-00008.safetensors",
142
+ "model.layers.16.mamba.conv1d.bias": "model-00004-of-00008.safetensors",
143
+ "model.layers.16.mamba.conv1d.weight": "model-00004-of-00008.safetensors",
144
+ "model.layers.16.mamba.dt_layernorm.weight": "model-00004-of-00008.safetensors",
145
+ "model.layers.16.mamba.dt_proj.bias": "model-00004-of-00008.safetensors",
146
+ "model.layers.16.mamba.dt_proj.weight": "model-00004-of-00008.safetensors",
147
+ "model.layers.16.mamba.in_proj.weight": "model-00004-of-00008.safetensors",
148
+ "model.layers.16.mamba.out_proj.weight": "model-00004-of-00008.safetensors",
149
+ "model.layers.16.mamba.x_proj.weight": "model-00004-of-00008.safetensors",
150
+ "model.layers.16.moe.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
151
+ "model.layers.16.moe.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
152
+ "model.layers.16.moe.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
153
+ "model.layers.16.pre_moe_layernorm.weight": "model-00004-of-00008.safetensors",
154
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00008.safetensors",
155
+ "model.layers.17.mamba.A_log": "model-00004-of-00008.safetensors",
156
+ "model.layers.17.mamba.B_layernorm.weight": "model-00005-of-00008.safetensors",
157
+ "model.layers.17.mamba.C_layernorm.weight": "model-00005-of-00008.safetensors",
158
+ "model.layers.17.mamba.D": "model-00004-of-00008.safetensors",
159
+ "model.layers.17.mamba.conv1d.bias": "model-00004-of-00008.safetensors",
160
+ "model.layers.17.mamba.conv1d.weight": "model-00004-of-00008.safetensors",
161
+ "model.layers.17.mamba.dt_layernorm.weight": "model-00005-of-00008.safetensors",
162
+ "model.layers.17.mamba.dt_proj.bias": "model-00005-of-00008.safetensors",
163
+ "model.layers.17.mamba.dt_proj.weight": "model-00005-of-00008.safetensors",
164
+ "model.layers.17.mamba.in_proj.weight": "model-00005-of-00008.safetensors",
165
+ "model.layers.17.mamba.out_proj.weight": "model-00005-of-00008.safetensors",
166
+ "model.layers.17.mamba.x_proj.weight": "model-00005-of-00008.safetensors",
167
+ "model.layers.17.moe.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
168
+ "model.layers.17.moe.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
169
+ "model.layers.17.moe.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
170
+ "model.layers.17.pre_moe_layernorm.weight": "model-00005-of-00008.safetensors",
171
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00008.safetensors",
172
+ "model.layers.18.mamba.A_log": "model-00005-of-00008.safetensors",
173
+ "model.layers.18.mamba.B_layernorm.weight": "model-00005-of-00008.safetensors",
174
+ "model.layers.18.mamba.C_layernorm.weight": "model-00005-of-00008.safetensors",
175
+ "model.layers.18.mamba.D": "model-00005-of-00008.safetensors",
176
+ "model.layers.18.mamba.conv1d.bias": "model-00005-of-00008.safetensors",
177
+ "model.layers.18.mamba.conv1d.weight": "model-00005-of-00008.safetensors",
178
+ "model.layers.18.mamba.dt_layernorm.weight": "model-00005-of-00008.safetensors",
179
+ "model.layers.18.mamba.dt_proj.bias": "model-00005-of-00008.safetensors",
180
+ "model.layers.18.mamba.dt_proj.weight": "model-00005-of-00008.safetensors",
181
+ "model.layers.18.mamba.in_proj.weight": "model-00005-of-00008.safetensors",
182
+ "model.layers.18.mamba.out_proj.weight": "model-00005-of-00008.safetensors",
183
+ "model.layers.18.mamba.x_proj.weight": "model-00005-of-00008.safetensors",
184
+ "model.layers.18.moe.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
185
+ "model.layers.18.moe.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
186
+ "model.layers.18.moe.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
187
+ "model.layers.18.pre_moe_layernorm.weight": "model-00005-of-00008.safetensors",
188
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00008.safetensors",
189
+ "model.layers.19.mamba.A_log": "model-00005-of-00008.safetensors",
190
+ "model.layers.19.mamba.B_layernorm.weight": "model-00005-of-00008.safetensors",
191
+ "model.layers.19.mamba.C_layernorm.weight": "model-00005-of-00008.safetensors",
192
+ "model.layers.19.mamba.D": "model-00005-of-00008.safetensors",
193
+ "model.layers.19.mamba.conv1d.bias": "model-00005-of-00008.safetensors",
194
+ "model.layers.19.mamba.conv1d.weight": "model-00005-of-00008.safetensors",
195
+ "model.layers.19.mamba.dt_layernorm.weight": "model-00005-of-00008.safetensors",
196
+ "model.layers.19.mamba.dt_proj.bias": "model-00005-of-00008.safetensors",
197
+ "model.layers.19.mamba.dt_proj.weight": "model-00005-of-00008.safetensors",
198
+ "model.layers.19.mamba.in_proj.weight": "model-00005-of-00008.safetensors",
199
+ "model.layers.19.mamba.out_proj.weight": "model-00005-of-00008.safetensors",
200
+ "model.layers.19.mamba.x_proj.weight": "model-00005-of-00008.safetensors",
201
+ "model.layers.19.moe.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
202
+ "model.layers.19.moe.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
203
+ "model.layers.19.moe.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
204
+ "model.layers.19.pre_moe_layernorm.weight": "model-00005-of-00008.safetensors",
205
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00008.safetensors",
206
+ "model.layers.2.mamba.A_log": "model-00001-of-00008.safetensors",
207
+ "model.layers.2.mamba.B_layernorm.weight": "model-00001-of-00008.safetensors",
208
+ "model.layers.2.mamba.C_layernorm.weight": "model-00001-of-00008.safetensors",
209
+ "model.layers.2.mamba.D": "model-00001-of-00008.safetensors",
210
+ "model.layers.2.mamba.conv1d.bias": "model-00001-of-00008.safetensors",
211
+ "model.layers.2.mamba.conv1d.weight": "model-00001-of-00008.safetensors",
212
+ "model.layers.2.mamba.dt_layernorm.weight": "model-00001-of-00008.safetensors",
213
+ "model.layers.2.mamba.dt_proj.bias": "model-00001-of-00008.safetensors",
214
+ "model.layers.2.mamba.dt_proj.weight": "model-00001-of-00008.safetensors",
215
+ "model.layers.2.mamba.in_proj.weight": "model-00001-of-00008.safetensors",
216
+ "model.layers.2.mamba.out_proj.weight": "model-00001-of-00008.safetensors",
217
+ "model.layers.2.mamba.x_proj.weight": "model-00001-of-00008.safetensors",
218
+ "model.layers.2.moe.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
219
+ "model.layers.2.moe.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
220
+ "model.layers.2.moe.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
221
+ "model.layers.2.pre_moe_layernorm.weight": "model-00001-of-00008.safetensors",
222
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00008.safetensors",
223
+ "model.layers.20.moe.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
224
+ "model.layers.20.moe.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
225
+ "model.layers.20.moe.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
226
+ "model.layers.20.pre_moe_layernorm.weight": "model-00005-of-00008.safetensors",
227
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
228
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
229
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
230
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
231
+ "model.layers.21.input_layernorm.weight": "model-00006-of-00008.safetensors",
232
+ "model.layers.21.mamba.A_log": "model-00005-of-00008.safetensors",
233
+ "model.layers.21.mamba.B_layernorm.weight": "model-00005-of-00008.safetensors",
234
+ "model.layers.21.mamba.C_layernorm.weight": "model-00005-of-00008.safetensors",
235
+ "model.layers.21.mamba.D": "model-00005-of-00008.safetensors",
236
+ "model.layers.21.mamba.conv1d.bias": "model-00005-of-00008.safetensors",
237
+ "model.layers.21.mamba.conv1d.weight": "model-00005-of-00008.safetensors",
238
+ "model.layers.21.mamba.dt_layernorm.weight": "model-00005-of-00008.safetensors",
239
+ "model.layers.21.mamba.dt_proj.bias": "model-00005-of-00008.safetensors",
240
+ "model.layers.21.mamba.dt_proj.weight": "model-00005-of-00008.safetensors",
241
+ "model.layers.21.mamba.in_proj.weight": "model-00005-of-00008.safetensors",
242
+ "model.layers.21.mamba.out_proj.weight": "model-00005-of-00008.safetensors",
243
+ "model.layers.21.mamba.x_proj.weight": "model-00005-of-00008.safetensors",
244
+ "model.layers.21.moe.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
245
+ "model.layers.21.moe.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
246
+ "model.layers.21.moe.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
247
+ "model.layers.21.pre_moe_layernorm.weight": "model-00006-of-00008.safetensors",
248
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00008.safetensors",
249
+ "model.layers.22.mamba.A_log": "model-00006-of-00008.safetensors",
250
+ "model.layers.22.mamba.B_layernorm.weight": "model-00006-of-00008.safetensors",
251
+ "model.layers.22.mamba.C_layernorm.weight": "model-00006-of-00008.safetensors",
252
+ "model.layers.22.mamba.D": "model-00006-of-00008.safetensors",
253
+ "model.layers.22.mamba.conv1d.bias": "model-00006-of-00008.safetensors",
254
+ "model.layers.22.mamba.conv1d.weight": "model-00006-of-00008.safetensors",
255
+ "model.layers.22.mamba.dt_layernorm.weight": "model-00006-of-00008.safetensors",
256
+ "model.layers.22.mamba.dt_proj.bias": "model-00006-of-00008.safetensors",
257
+ "model.layers.22.mamba.dt_proj.weight": "model-00006-of-00008.safetensors",
258
+ "model.layers.22.mamba.in_proj.weight": "model-00006-of-00008.safetensors",
259
+ "model.layers.22.mamba.out_proj.weight": "model-00006-of-00008.safetensors",
260
+ "model.layers.22.mamba.x_proj.weight": "model-00006-of-00008.safetensors",
261
+ "model.layers.22.moe.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
262
+ "model.layers.22.moe.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
263
+ "model.layers.22.moe.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
264
+ "model.layers.22.pre_moe_layernorm.weight": "model-00006-of-00008.safetensors",
265
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00008.safetensors",
266
+ "model.layers.23.mamba.A_log": "model-00006-of-00008.safetensors",
267
+ "model.layers.23.mamba.B_layernorm.weight": "model-00006-of-00008.safetensors",
268
+ "model.layers.23.mamba.C_layernorm.weight": "model-00006-of-00008.safetensors",
269
+ "model.layers.23.mamba.D": "model-00006-of-00008.safetensors",
270
+ "model.layers.23.mamba.conv1d.bias": "model-00006-of-00008.safetensors",
271
+ "model.layers.23.mamba.conv1d.weight": "model-00006-of-00008.safetensors",
272
+ "model.layers.23.mamba.dt_layernorm.weight": "model-00006-of-00008.safetensors",
273
+ "model.layers.23.mamba.dt_proj.bias": "model-00006-of-00008.safetensors",
274
+ "model.layers.23.mamba.dt_proj.weight": "model-00006-of-00008.safetensors",
275
+ "model.layers.23.mamba.in_proj.weight": "model-00006-of-00008.safetensors",
276
+ "model.layers.23.mamba.out_proj.weight": "model-00006-of-00008.safetensors",
277
+ "model.layers.23.mamba.x_proj.weight": "model-00006-of-00008.safetensors",
278
+ "model.layers.23.moe.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
279
+ "model.layers.23.moe.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
280
+ "model.layers.23.moe.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
281
+ "model.layers.23.pre_moe_layernorm.weight": "model-00006-of-00008.safetensors",
282
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00008.safetensors",
283
+ "model.layers.24.mamba.A_log": "model-00006-of-00008.safetensors",
284
+ "model.layers.24.mamba.B_layernorm.weight": "model-00006-of-00008.safetensors",
285
+ "model.layers.24.mamba.C_layernorm.weight": "model-00006-of-00008.safetensors",
286
+ "model.layers.24.mamba.D": "model-00006-of-00008.safetensors",
287
+ "model.layers.24.mamba.conv1d.bias": "model-00006-of-00008.safetensors",
288
+ "model.layers.24.mamba.conv1d.weight": "model-00006-of-00008.safetensors",
289
+ "model.layers.24.mamba.dt_layernorm.weight": "model-00006-of-00008.safetensors",
290
+ "model.layers.24.mamba.dt_proj.bias": "model-00006-of-00008.safetensors",
291
+ "model.layers.24.mamba.dt_proj.weight": "model-00006-of-00008.safetensors",
292
+ "model.layers.24.mamba.in_proj.weight": "model-00006-of-00008.safetensors",
293
+ "model.layers.24.mamba.out_proj.weight": "model-00006-of-00008.safetensors",
294
+ "model.layers.24.mamba.x_proj.weight": "model-00006-of-00008.safetensors",
295
+ "model.layers.24.moe.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
296
+ "model.layers.24.moe.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
297
+ "model.layers.24.moe.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
298
+ "model.layers.24.pre_moe_layernorm.weight": "model-00006-of-00008.safetensors",
299
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00008.safetensors",
300
+ "model.layers.25.mamba.A_log": "model-00006-of-00008.safetensors",
301
+ "model.layers.25.mamba.B_layernorm.weight": "model-00006-of-00008.safetensors",
302
+ "model.layers.25.mamba.C_layernorm.weight": "model-00006-of-00008.safetensors",
303
+ "model.layers.25.mamba.D": "model-00006-of-00008.safetensors",
304
+ "model.layers.25.mamba.conv1d.bias": "model-00006-of-00008.safetensors",
305
+ "model.layers.25.mamba.conv1d.weight": "model-00006-of-00008.safetensors",
306
+ "model.layers.25.mamba.dt_layernorm.weight": "model-00006-of-00008.safetensors",
307
+ "model.layers.25.mamba.dt_proj.bias": "model-00006-of-00008.safetensors",
308
+ "model.layers.25.mamba.dt_proj.weight": "model-00006-of-00008.safetensors",
309
+ "model.layers.25.mamba.in_proj.weight": "model-00006-of-00008.safetensors",
310
+ "model.layers.25.mamba.out_proj.weight": "model-00006-of-00008.safetensors",
311
+ "model.layers.25.mamba.x_proj.weight": "model-00006-of-00008.safetensors",
312
+ "model.layers.25.moe.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
313
+ "model.layers.25.moe.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
314
+ "model.layers.25.moe.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
315
+ "model.layers.25.pre_moe_layernorm.weight": "model-00006-of-00008.safetensors",
316
+ "model.layers.26.input_layernorm.weight": "model-00007-of-00008.safetensors",
317
+ "model.layers.26.mamba.A_log": "model-00006-of-00008.safetensors",
318
+ "model.layers.26.mamba.B_layernorm.weight": "model-00007-of-00008.safetensors",
319
+ "model.layers.26.mamba.C_layernorm.weight": "model-00007-of-00008.safetensors",
320
+ "model.layers.26.mamba.D": "model-00006-of-00008.safetensors",
321
+ "model.layers.26.mamba.conv1d.bias": "model-00006-of-00008.safetensors",
322
+ "model.layers.26.mamba.conv1d.weight": "model-00006-of-00008.safetensors",
323
+ "model.layers.26.mamba.dt_layernorm.weight": "model-00007-of-00008.safetensors",
324
+ "model.layers.26.mamba.dt_proj.bias": "model-00007-of-00008.safetensors",
325
+ "model.layers.26.mamba.dt_proj.weight": "model-00007-of-00008.safetensors",
326
+ "model.layers.26.mamba.in_proj.weight": "model-00007-of-00008.safetensors",
327
+ "model.layers.26.mamba.out_proj.weight": "model-00007-of-00008.safetensors",
328
+ "model.layers.26.mamba.x_proj.weight": "model-00007-of-00008.safetensors",
329
+ "model.layers.26.moe.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
330
+ "model.layers.26.moe.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
331
+ "model.layers.26.moe.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
332
+ "model.layers.26.pre_moe_layernorm.weight": "model-00007-of-00008.safetensors",
333
+ "model.layers.27.input_layernorm.weight": "model-00007-of-00008.safetensors",
334
+ "model.layers.27.mamba.A_log": "model-00007-of-00008.safetensors",
335
+ "model.layers.27.mamba.B_layernorm.weight": "model-00007-of-00008.safetensors",
336
+ "model.layers.27.mamba.C_layernorm.weight": "model-00007-of-00008.safetensors",
337
+ "model.layers.27.mamba.D": "model-00007-of-00008.safetensors",
338
+ "model.layers.27.mamba.conv1d.bias": "model-00007-of-00008.safetensors",
339
+ "model.layers.27.mamba.conv1d.weight": "model-00007-of-00008.safetensors",
340
+ "model.layers.27.mamba.dt_layernorm.weight": "model-00007-of-00008.safetensors",
341
+ "model.layers.27.mamba.dt_proj.bias": "model-00007-of-00008.safetensors",
342
+ "model.layers.27.mamba.dt_proj.weight": "model-00007-of-00008.safetensors",
343
+ "model.layers.27.mamba.in_proj.weight": "model-00007-of-00008.safetensors",
344
+ "model.layers.27.mamba.out_proj.weight": "model-00007-of-00008.safetensors",
345
+ "model.layers.27.mamba.x_proj.weight": "model-00007-of-00008.safetensors",
346
+ "model.layers.27.moe.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
347
+ "model.layers.27.moe.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
348
+ "model.layers.27.moe.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
349
+ "model.layers.27.pre_moe_layernorm.weight": "model-00007-of-00008.safetensors",
350
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00008.safetensors",
351
+ "model.layers.28.moe.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
352
+ "model.layers.28.moe.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
353
+ "model.layers.28.moe.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
354
+ "model.layers.28.pre_moe_layernorm.weight": "model-00007-of-00008.safetensors",
355
+ "model.layers.28.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
356
+ "model.layers.28.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
357
+ "model.layers.28.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
358
+ "model.layers.28.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
359
+ "model.layers.29.input_layernorm.weight": "model-00007-of-00008.safetensors",
360
+ "model.layers.29.mamba.A_log": "model-00007-of-00008.safetensors",
361
+ "model.layers.29.mamba.B_layernorm.weight": "model-00007-of-00008.safetensors",
362
+ "model.layers.29.mamba.C_layernorm.weight": "model-00007-of-00008.safetensors",
363
+ "model.layers.29.mamba.D": "model-00007-of-00008.safetensors",
364
+ "model.layers.29.mamba.conv1d.bias": "model-00007-of-00008.safetensors",
365
+ "model.layers.29.mamba.conv1d.weight": "model-00007-of-00008.safetensors",
366
+ "model.layers.29.mamba.dt_layernorm.weight": "model-00007-of-00008.safetensors",
367
+ "model.layers.29.mamba.dt_proj.bias": "model-00007-of-00008.safetensors",
368
+ "model.layers.29.mamba.dt_proj.weight": "model-00007-of-00008.safetensors",
369
+ "model.layers.29.mamba.in_proj.weight": "model-00007-of-00008.safetensors",
370
+ "model.layers.29.mamba.out_proj.weight": "model-00007-of-00008.safetensors",
371
+ "model.layers.29.mamba.x_proj.weight": "model-00007-of-00008.safetensors",
372
+ "model.layers.29.moe.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
373
+ "model.layers.29.moe.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
374
+ "model.layers.29.moe.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
375
+ "model.layers.29.pre_moe_layernorm.weight": "model-00007-of-00008.safetensors",
376
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00008.safetensors",
377
+ "model.layers.3.mamba.A_log": "model-00001-of-00008.safetensors",
378
+ "model.layers.3.mamba.B_layernorm.weight": "model-00001-of-00008.safetensors",
379
+ "model.layers.3.mamba.C_layernorm.weight": "model-00001-of-00008.safetensors",
380
+ "model.layers.3.mamba.D": "model-00001-of-00008.safetensors",
381
+ "model.layers.3.mamba.conv1d.bias": "model-00001-of-00008.safetensors",
382
+ "model.layers.3.mamba.conv1d.weight": "model-00001-of-00008.safetensors",
383
+ "model.layers.3.mamba.dt_layernorm.weight": "model-00001-of-00008.safetensors",
384
+ "model.layers.3.mamba.dt_proj.bias": "model-00001-of-00008.safetensors",
385
+ "model.layers.3.mamba.dt_proj.weight": "model-00001-of-00008.safetensors",
386
+ "model.layers.3.mamba.in_proj.weight": "model-00001-of-00008.safetensors",
387
+ "model.layers.3.mamba.out_proj.weight": "model-00001-of-00008.safetensors",
388
+ "model.layers.3.mamba.x_proj.weight": "model-00001-of-00008.safetensors",
389
+ "model.layers.3.moe.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
390
+ "model.layers.3.moe.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
391
+ "model.layers.3.moe.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
392
+ "model.layers.3.pre_moe_layernorm.weight": "model-00002-of-00008.safetensors",
393
+ "model.layers.30.input_layernorm.weight": "model-00008-of-00008.safetensors",
394
+ "model.layers.30.mamba.A_log": "model-00007-of-00008.safetensors",
395
+ "model.layers.30.mamba.B_layernorm.weight": "model-00007-of-00008.safetensors",
396
+ "model.layers.30.mamba.C_layernorm.weight": "model-00007-of-00008.safetensors",
397
+ "model.layers.30.mamba.D": "model-00007-of-00008.safetensors",
398
+ "model.layers.30.mamba.conv1d.bias": "model-00007-of-00008.safetensors",
399
+ "model.layers.30.mamba.conv1d.weight": "model-00007-of-00008.safetensors",
400
+ "model.layers.30.mamba.dt_layernorm.weight": "model-00007-of-00008.safetensors",
401
+ "model.layers.30.mamba.dt_proj.bias": "model-00007-of-00008.safetensors",
402
+ "model.layers.30.mamba.dt_proj.weight": "model-00007-of-00008.safetensors",
403
+ "model.layers.30.mamba.in_proj.weight": "model-00007-of-00008.safetensors",
404
+ "model.layers.30.mamba.out_proj.weight": "model-00007-of-00008.safetensors",
405
+ "model.layers.30.mamba.x_proj.weight": "model-00007-of-00008.safetensors",
406
+ "model.layers.30.moe.experts.0.down_proj.weight": "model-00008-of-00008.safetensors",
407
+ "model.layers.30.moe.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
408
+ "model.layers.30.moe.experts.0.up_proj.weight": "model-00008-of-00008.safetensors",
409
+ "model.layers.30.pre_moe_layernorm.weight": "model-00008-of-00008.safetensors",
410
+ "model.layers.31.input_layernorm.weight": "model-00008-of-00008.safetensors",
411
+ "model.layers.31.mamba.A_log": "model-00008-of-00008.safetensors",
412
+ "model.layers.31.mamba.B_layernorm.weight": "model-00008-of-00008.safetensors",
413
+ "model.layers.31.mamba.C_layernorm.weight": "model-00008-of-00008.safetensors",
414
+ "model.layers.31.mamba.D": "model-00008-of-00008.safetensors",
415
+ "model.layers.31.mamba.conv1d.bias": "model-00008-of-00008.safetensors",
416
+ "model.layers.31.mamba.conv1d.weight": "model-00008-of-00008.safetensors",
417
+ "model.layers.31.mamba.dt_layernorm.weight": "model-00008-of-00008.safetensors",
418
+ "model.layers.31.mamba.dt_proj.bias": "model-00008-of-00008.safetensors",
419
+ "model.layers.31.mamba.dt_proj.weight": "model-00008-of-00008.safetensors",
420
+ "model.layers.31.mamba.in_proj.weight": "model-00008-of-00008.safetensors",
421
+ "model.layers.31.mamba.out_proj.weight": "model-00008-of-00008.safetensors",
422
+ "model.layers.31.mamba.x_proj.weight": "model-00008-of-00008.safetensors",
423
+ "model.layers.31.moe.experts.0.down_proj.weight": "model-00008-of-00008.safetensors",
424
+ "model.layers.31.moe.experts.0.gate_proj.weight": "model-00008-of-00008.safetensors",
425
+ "model.layers.31.moe.experts.0.up_proj.weight": "model-00008-of-00008.safetensors",
426
+ "model.layers.31.pre_moe_layernorm.weight": "model-00008-of-00008.safetensors",
427
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00008.safetensors",
428
+ "model.layers.4.moe.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
429
+ "model.layers.4.moe.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
430
+ "model.layers.4.moe.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
431
+ "model.layers.4.pre_moe_layernorm.weight": "model-00002-of-00008.safetensors",
432
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
433
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
434
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
435
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
436
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00008.safetensors",
437
+ "model.layers.5.mamba.A_log": "model-00002-of-00008.safetensors",
438
+ "model.layers.5.mamba.B_layernorm.weight": "model-00002-of-00008.safetensors",
439
+ "model.layers.5.mamba.C_layernorm.weight": "model-00002-of-00008.safetensors",
440
+ "model.layers.5.mamba.D": "model-00002-of-00008.safetensors",
441
+ "model.layers.5.mamba.conv1d.bias": "model-00002-of-00008.safetensors",
442
+ "model.layers.5.mamba.conv1d.weight": "model-00002-of-00008.safetensors",
443
+ "model.layers.5.mamba.dt_layernorm.weight": "model-00002-of-00008.safetensors",
444
+ "model.layers.5.mamba.dt_proj.bias": "model-00002-of-00008.safetensors",
445
+ "model.layers.5.mamba.dt_proj.weight": "model-00002-of-00008.safetensors",
446
+ "model.layers.5.mamba.in_proj.weight": "model-00002-of-00008.safetensors",
447
+ "model.layers.5.mamba.out_proj.weight": "model-00002-of-00008.safetensors",
448
+ "model.layers.5.mamba.x_proj.weight": "model-00002-of-00008.safetensors",
449
+ "model.layers.5.moe.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
450
+ "model.layers.5.moe.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
451
+ "model.layers.5.moe.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
452
+ "model.layers.5.pre_moe_layernorm.weight": "model-00002-of-00008.safetensors",
453
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00008.safetensors",
454
+ "model.layers.6.mamba.A_log": "model-00002-of-00008.safetensors",
455
+ "model.layers.6.mamba.B_layernorm.weight": "model-00002-of-00008.safetensors",
456
+ "model.layers.6.mamba.C_layernorm.weight": "model-00002-of-00008.safetensors",
457
+ "model.layers.6.mamba.D": "model-00002-of-00008.safetensors",
458
+ "model.layers.6.mamba.conv1d.bias": "model-00002-of-00008.safetensors",
459
+ "model.layers.6.mamba.conv1d.weight": "model-00002-of-00008.safetensors",
460
+ "model.layers.6.mamba.dt_layernorm.weight": "model-00002-of-00008.safetensors",
461
+ "model.layers.6.mamba.dt_proj.bias": "model-00002-of-00008.safetensors",
462
+ "model.layers.6.mamba.dt_proj.weight": "model-00002-of-00008.safetensors",
463
+ "model.layers.6.mamba.in_proj.weight": "model-00002-of-00008.safetensors",
464
+ "model.layers.6.mamba.out_proj.weight": "model-00002-of-00008.safetensors",
465
+ "model.layers.6.mamba.x_proj.weight": "model-00002-of-00008.safetensors",
466
+ "model.layers.6.moe.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
467
+ "model.layers.6.moe.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
468
+ "model.layers.6.moe.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
469
+ "model.layers.6.pre_moe_layernorm.weight": "model-00002-of-00008.safetensors",
470
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00008.safetensors",
471
+ "model.layers.7.mamba.A_log": "model-00002-of-00008.safetensors",
472
+ "model.layers.7.mamba.B_layernorm.weight": "model-00002-of-00008.safetensors",
473
+ "model.layers.7.mamba.C_layernorm.weight": "model-00002-of-00008.safetensors",
474
+ "model.layers.7.mamba.D": "model-00002-of-00008.safetensors",
475
+ "model.layers.7.mamba.conv1d.bias": "model-00002-of-00008.safetensors",
476
+ "model.layers.7.mamba.conv1d.weight": "model-00002-of-00008.safetensors",
477
+ "model.layers.7.mamba.dt_layernorm.weight": "model-00002-of-00008.safetensors",
478
+ "model.layers.7.mamba.dt_proj.bias": "model-00002-of-00008.safetensors",
479
+ "model.layers.7.mamba.dt_proj.weight": "model-00002-of-00008.safetensors",
480
+ "model.layers.7.mamba.in_proj.weight": "model-00002-of-00008.safetensors",
481
+ "model.layers.7.mamba.out_proj.weight": "model-00002-of-00008.safetensors",
482
+ "model.layers.7.mamba.x_proj.weight": "model-00002-of-00008.safetensors",
483
+ "model.layers.7.moe.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
484
+ "model.layers.7.moe.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
485
+ "model.layers.7.moe.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
486
+ "model.layers.7.pre_moe_layernorm.weight": "model-00002-of-00008.safetensors",
487
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00008.safetensors",
488
+ "model.layers.8.mamba.A_log": "model-00002-of-00008.safetensors",
489
+ "model.layers.8.mamba.B_layernorm.weight": "model-00003-of-00008.safetensors",
490
+ "model.layers.8.mamba.C_layernorm.weight": "model-00003-of-00008.safetensors",
491
+ "model.layers.8.mamba.D": "model-00002-of-00008.safetensors",
492
+ "model.layers.8.mamba.conv1d.bias": "model-00002-of-00008.safetensors",
493
+ "model.layers.8.mamba.conv1d.weight": "model-00002-of-00008.safetensors",
494
+ "model.layers.8.mamba.dt_layernorm.weight": "model-00003-of-00008.safetensors",
495
+ "model.layers.8.mamba.dt_proj.bias": "model-00003-of-00008.safetensors",
496
+ "model.layers.8.mamba.dt_proj.weight": "model-00003-of-00008.safetensors",
497
+ "model.layers.8.mamba.in_proj.weight": "model-00003-of-00008.safetensors",
498
+ "model.layers.8.mamba.out_proj.weight": "model-00003-of-00008.safetensors",
499
+ "model.layers.8.mamba.x_proj.weight": "model-00003-of-00008.safetensors",
500
+ "model.layers.8.moe.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
501
+ "model.layers.8.moe.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
502
+ "model.layers.8.moe.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
503
+ "model.layers.8.pre_moe_layernorm.weight": "model-00003-of-00008.safetensors",
504
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00008.safetensors",
505
+ "model.layers.9.mamba.A_log": "model-00003-of-00008.safetensors",
506
+ "model.layers.9.mamba.B_layernorm.weight": "model-00003-of-00008.safetensors",
507
+ "model.layers.9.mamba.C_layernorm.weight": "model-00003-of-00008.safetensors",
508
+ "model.layers.9.mamba.D": "model-00003-of-00008.safetensors",
509
+ "model.layers.9.mamba.conv1d.bias": "model-00003-of-00008.safetensors",
510
+ "model.layers.9.mamba.conv1d.weight": "model-00003-of-00008.safetensors",
511
+ "model.layers.9.mamba.dt_layernorm.weight": "model-00003-of-00008.safetensors",
512
+ "model.layers.9.mamba.dt_proj.bias": "model-00003-of-00008.safetensors",
513
+ "model.layers.9.mamba.dt_proj.weight": "model-00003-of-00008.safetensors",
514
+ "model.layers.9.mamba.in_proj.weight": "model-00003-of-00008.safetensors",
515
+ "model.layers.9.mamba.out_proj.weight": "model-00003-of-00008.safetensors",
516
+ "model.layers.9.mamba.x_proj.weight": "model-00003-of-00008.safetensors",
517
+ "model.layers.9.moe.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
518
+ "model.layers.9.moe.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
519
+ "model.layers.9.moe.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
520
+ "model.layers.9.pre_moe_layernorm.weight": "model-00003-of-00008.safetensors"
521
+ }
522
+ }
modeling_jamba.py ADDED
The diff for this file is too large to render. See raw diff