--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: google-bert/bert-base-uncased metrics: - accuracy model-index: - name: peft_ft_random results: [] --- # peft_ft_random This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.4980 - Accuracy: -5564.7596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------:| | No log | 0.8 | 2 | 10.1306 | 48758.8852 | | No log | 2.0 | 5 | 9.1696 | 68666.5148 | | No log | 2.8 | 7 | 8.8054 | -22131.0614 | | 9.5148 | 4.0 | 10 | 8.4980 | -5564.7596 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1