israel-avihail commited on
Commit
b3bbaa3
1 Parent(s): 08511f1

Push LunarLander-v2 model

Browse files
Bereshit-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:654ad8ac8f4356f46e8d5e78bf30cc2449b8a99ad6b44ec67afa7790706cd9d9
3
+ size 147424
Bereshit-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
Bereshit-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1c0072940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd1c00729d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1c0072a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd1c0072af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd1c0072b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd1c0072c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd1c0072ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd1c0072d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd1c0072dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd1c0072e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1c0072ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd1c0072f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd1c006e6f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677762831830691842,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADqIST4xwn0+oRoxvmEUgb6c/6q8Nk8IvQAAAAAAAAAAANKaPF/rtD5ABU++5iCEvnYeeTz/DSm9AAAAAAAAAADNS249w4FZuv5jFbpRVAq5z1U+Ohe7NzkAAIA/AACAP808MjuuxYG6XYnytl5X6DBYB9O6XUkMNgAAgD8AAIA/+vYSvtxq3D4OeUM+So5qvgD+kjzcj5a9AAAAAAAAAAAzi+u7KeRrup6eQbpAKDK5kc3uul6mdTkAAIA/AACAP2ZURT04kq+7UkH6uqpVkjwL4RK91gB4PQAAgD8AAIA/AKDCO/ZMHboFemy6hLAgtoCFCTnLFYc5AACAPwAAgD/N+qg9FLzMuv0TBrxyOUO8T8XKu54aK70AAIA/AACAP4BaYj3D0Q+6TvOuuuB1iLXcoz+4ihTIOQAAgD8AAIA/gG7bPY/2AbqR9bK6BoYluc538zmqVNs5AACAPwAAgD/zpQG+iHwjP93r2D2HS2m+zzelu639JT4AAAAAAAAAADMzIrt0uls+KWmIvVSbIr6VP329prlwvQAAAAAAAAAAGsW5vR0IlD9K08m+TaPsviiZ/7w+Lyi+AAAAAAAAAAAAhYQ9t5+hP1L2Oj5TNaK+t+X1PYK8n7wAAAAAAAAAAOZeNL0zYLw/9/GgvrcZRT0wvzM6K6fGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInxwFiIILb0CUhpRSlIwBbJRNMQGMAXSUR0CS+hlMRHwxdX2UKGgGaAloD0MITpgwmtVZcUCUhpRSlGgVTWEBaBZHQJL7EHIIWxh1fZQoaAZoCWgPQwg+CWzOgWtwQJSGlFKUaBVNRQFoFkdAkvuAmVqveXV9lChoBmgJaA9DCIguqG+Ze2xAlIaUUpRoFU00AWgWR0CS+4xDLKV6dX2UKGgGaAloD0MIi6pf6Xy5bUCUhpRSlGgVTUEBaBZHQJL7vQSi/PB1fZQoaAZoCWgPQwh9sIwN3WxuQJSGlFKUaBVNawFoFkdAkv5prgwXZXV9lChoBmgJaA9DCHhflQuV+XBAlIaUUpRoFU0ZAWgWR0CS/rwM6RyPdX2UKGgGaAloD0MIVu9wO3S2cECUhpRSlGgVTR8BaBZHQJL/JGI9C/p1fZQoaAZoCWgPQwia7nVSXx9vQJSGlFKUaBVNRQFoFkdAkv+DTa0x/XV9lChoBmgJaA9DCBZQqKfP+HFAlIaUUpRoFU0dAWgWR0CS/5xNIsiCdX2UKGgGaAloD0MIeAjjp/GaaECUhpRSlGgVTZUCaBZHQJMAW5lOGj91fZQoaAZoCWgPQwjOOXgmNNFrQJSGlFKUaBVNWAFoFkdAkwBxIatLc3V9lChoBmgJaA9DCCFcAYX6nG9AlIaUUpRoFU0ZAWgWR0CTAJwFC9h7dX2UKGgGaAloD0MIKqio+lVgcECUhpRSlGgVTZQBaBZHQJMC+MBIWgx1fZQoaAZoCWgPQwj9EYYBS6JJQJSGlFKUaBVL5mgWR0CTA7aCL/CJdX2UKGgGaAloD0MIIQIOoYpwckCUhpRSlGgVTUkBaBZHQJMD0cdYGMZ1fZQoaAZoCWgPQwjECrd8JEduQJSGlFKUaBVNOwFoFkdAkwZg5/9YOnV9lChoBmgJaA9DCGZpp+ayGXJAlIaUUpRoFU0WAWgWR0CTBtYa5wwTdX2UKGgGaAloD0MIRzgteNHYcECUhpRSlGgVTREBaBZHQJMHG8f3evZ1fZQoaAZoCWgPQwjDu1zE9w5wQJSGlFKUaBVNZAFoFkdAkyG/a11GLHV9lChoBmgJaA9DCKYr2EZ8G3FAlIaUUpRoFU0UAWgWR0CTIiw0fozOdX2UKGgGaAloD0MI5bZ9jzo9cECUhpRSlGgVTScBaBZHQJMi5YwIt191fZQoaAZoCWgPQwhyNh0BXOFuQJSGlFKUaBVNeQFoFkdAkyLnHWBjF3V9lChoBmgJaA9DCF6EKcqlCHFAlIaUUpRoFU08AWgWR0CTIudJJ5E/dX2UKGgGaAloD0MIknnkD4bzcECUhpRSlGgVTTkBaBZHQJMjBrGipNt1fZQoaAZoCWgPQwiB0Hr4MjRsQJSGlFKUaBVNJgFoFkdAkyZNrwe/6HV9lChoBmgJaA9DCAAbECHum3JAlIaUUpRoFU1vAWgWR0CTJo3QD3dsdX2UKGgGaAloD0MIq1s9Jz05cECUhpRSlGgVTWoBaBZHQJMmj0pVjqh1fZQoaAZoCWgPQwiSBre1hS5uQJSGlFKUaBVNcwFoFkdAkyamAskIHHV9lChoBmgJaA9DCLafjPHhC3NAlIaUUpRoFU0IAWgWR0CTKK69kBjndX2UKGgGaAloD0MIzvxqDtASckCUhpRSlGgVTRoBaBZHQJMoxchTwUh1fZQoaAZoCWgPQwh1PdF1YcptQJSGlFKUaBVN2AFoFkdAkykzi0fHP3V9lChoBmgJaA9DCIT1fw7zdXBAlIaUUpRoFU0nAWgWR0CTKYUNKAavdX2UKGgGaAloD0MIKxiV1Ikeb0CUhpRSlGgVTZ8BaBZHQJMrOa8YhuB1fZQoaAZoCWgPQwjvkGKABE9wQJSGlFKUaBVNpQFoFkdAkyuErwvxpnV9lChoBmgJaA9DCF8KD5odaHFAlIaUUpRoFU08AWgWR0CTLot3fQ8fdX2UKGgGaAloD0MINIRjlr2QckCUhpRSlGgVTVUBaBZHQJMu3XXiBGx1fZQoaAZoCWgPQwgE5bZ9j/VuQJSGlFKUaBVNfwFoFkdAkzAjn7pFC3V9lChoBmgJaA9DCIe/JmsU4XFAlIaUUpRoFU1nAWgWR0CTMETI/7iydX2UKGgGaAloD0MImiZsPxlOcUCUhpRSlGgVTXQBaBZHQJMw3863iJh1fZQoaAZoCWgPQwholC79y1xtQJSGlFKUaBVNIgFoFkdAkzEuWBz3iHV9lChoBmgJaA9DCB8UlKIVt2tAlIaUUpRoFU0xAWgWR0CTMX5rxiG4dX2UKGgGaAloD0MI83NDU/bLcECUhpRSlGgVTaEBaBZHQJMyTHggow51fZQoaAZoCWgPQwj9wcBzb/RyQJSGlFKUaBVNUwFoFkdAkzLR/ZuhsnV9lChoBmgJaA9DCMPUljrIMXFAlIaUUpRoFU1pAWgWR0CTM5bAk9lmdX2UKGgGaAloD0MIiIOEKF8Ob0CUhpRSlGgVTTwBaBZHQJM0gzEaVD91fZQoaAZoCWgPQwhz2eicHwNxQJSGlFKUaBVNaQFoFkdAkzWEmx+rl3V9lChoBmgJaA9DCN/A5EbRo3FAlIaUUpRoFU1eAWgWR0CTNfdhy8zzdX2UKGgGaAloD0MILq2GxL1jcUCUhpRSlGgVTS8BaBZHQJM2RtxdY4h1fZQoaAZoCWgPQwhgsBu27Y9xQJSGlFKUaBVNkwFoFkdAkzbiT+vQnnV9lChoBmgJaA9DCOW36GSpJW5AlIaUUpRoFU1dAWgWR0CTN10/W1+idX2UKGgGaAloD0MINe7Nbxh9cUCUhpRSlGgVTS8BaBZHQJM4ll7MPjJ1fZQoaAZoCWgPQwi7uI0GcA5yQJSGlFKUaBVNUwFoFkdAkzoWG/N7jXV9lChoBmgJaA9DCAw9YvScdnJAlIaUUpRoFU1QAWgWR0CTO2aFmFrVdX2UKGgGaAloD0MI3XwjumficUCUhpRSlGgVTVQBaBZHQJM9IKD01651fZQoaAZoCWgPQwgC1NSytaxtQJSGlFKUaBVNTQFoFkdAkz0+AVfu1HV9lChoBmgJaA9DCEVI3c6+wm5AlIaUUpRoFU05AWgWR0CTPlBt1p0wdX2UKGgGaAloD0MItHVwsLe1cECUhpRSlGgVTXQBaBZHQJM+YLUkOZt1fZQoaAZoCWgPQwjJWkOpfeZwQJSGlFKUaBVNUAFoFkdAkz6sZtNzsHV9lChoBmgJaA9DCHV4COMn1G1AlIaUUpRoFU1FAWgWR0CTQcPNFBppdX2UKGgGaAloD0MIiVxwBn8sa0CUhpRSlGgVTXIBaBZHQJNCrQZ4wAV1fZQoaAZoCWgPQwh4exACMn1xQJSGlFKUaBVNNQFoFkdAk0PawpvxY3V9lChoBmgJaA9DCLQh/8yg629AlIaUUpRoFU1WAWgWR0CTRFCMglnidX2UKGgGaAloD0MIW+m12VjHcECUhpRSlGgVTY4BaBZHQJNfrRMN+b51fZQoaAZoCWgPQwiqm4u/rQVyQJSGlFKUaBVN1wFoFkdAk2Sy+pOvdXV9lChoBmgJaA9DCAZHyaszNHBAlIaUUpRoFU1CAWgWR0CTZLMUh3aBdX2UKGgGaAloD0MIjpWYZ+X7cECUhpRSlGgVTTABaBZHQJNk0KQaJhx1fZQoaAZoCWgPQwg3GsBbIDFwQJSGlFKUaBVNOQFoFkdAk2VUdeY2KnV9lChoBmgJaA9DCACPqFBd/m5AlIaUUpRoFU3aAmgWR0CTZp/5+H8CdX2UKGgGaAloD0MIlMFR8uqzckCUhpRSlGgVTQIBaBZHQJNnrhUBGQV1fZQoaAZoCWgPQwjZlCu8y3JwQJSGlFKUaBVNsAFoFkdAk2ilLFn7HnV9lChoBmgJaA9DCDpBmxx+D3BAlIaUUpRoFU3VAWgWR0CTaOFOO802dX2UKGgGaAloD0MIs1w2OmcSbkCUhpRSlGgVTQECaBZHQJNo4oTfzjF1fZQoaAZoCWgPQwj44ov2uJFxQJSGlFKUaBVN0QFoFkdAk2xHgccU/XV9lChoBmgJaA9DCNjYJao3iW5AlIaUUpRoFU3MAWgWR0CTby6Rhc7hdX2UKGgGaAloD0MI6pYd4h87b0CUhpRSlGgVTS8BaBZHQJNyTKdQO4J1fZQoaAZoCWgPQwjhtUsbToZxQJSGlFKUaBVNIAJoFkdAk3JpTuOS4nV9lChoBmgJaA9DCOW4UzqYk3BAlIaUUpRoFU07AWgWR0CTcsX9R77bdX2UKGgGaAloD0MIgLdAguLbb0CUhpRSlGgVTQECaBZHQJNzGNvOyFB1fZQoaAZoCWgPQwjkafmBKw5wQJSGlFKUaBVNXgFoFkdAk3TNIPK+z3V9lChoBmgJaA9DCC81Qj9T43BAlIaUUpRoFU0fAWgWR0CTdPZha1TjdX2UKGgGaAloD0MIAcEcPf7ObUCUhpRSlGgVTTUBaBZHQJN1Ci48U211fZQoaAZoCWgPQwgyO4veqSZtQJSGlFKUaBVNxQJoFkdAk3WuH31zyXV9lChoBmgJaA9DCLsPQGqTNG9AlIaUUpRoFU1FAWgWR0CTdorMC9ytdX2UKGgGaAloD0MIaY6s/LKycUCUhpRSlGgVTQICaBZHQJN3A5Qxesx1fZQoaAZoCWgPQwhW1cvvtMByQJSGlFKUaBVNoQFoFkdAk3f80cfeUXV9lChoBmgJaA9DCHS2gNB6xF9AlIaUUpRoFU3oA2gWR0CTeQuSfUWmdX2UKGgGaAloD0MIdzBinwBkcUCUhpRSlGgVTUYBaBZHQJN5skfLcKx1fZQoaAZoCWgPQwhFLc2tEMpuQJSGlFKUaBVN/AFoFkdAk3o51A7gbnV9lChoBmgJaA9DCKaAtP8BlXBAlIaUUpRoFU02AWgWR0CTfBU+LWI5dX2UKGgGaAloD0MIzok9tE/CcECUhpRSlGgVTfoBaBZHQJN+Gu7pV0d1fZQoaAZoCWgPQwhxVG6i1r9xQJSGlFKUaBVNMAFoFkdAk4Aa9GqgiHV9lChoBmgJaA9DCLhYUYPpv3BAlIaUUpRoFU02AWgWR0CThLC7btZ3dX2UKGgGaAloD0MIyuGTTuSccECUhpRSlGgVTW8BaBZHQJOHQMBp5/t1fZQoaAZoCWgPQwhM4UGz6wpuQJSGlFKUaBVNnwFoFkdAk4dVKwpvxnV9lChoBmgJaA9DCPDd5o3TI3BAlIaUUpRoFU17AWgWR0CTiFD9wWFfdX2UKGgGaAloD0MI5ueGpuzcb0CUhpRSlGgVTd0BaBZHQJOK1EqlP8B1fZQoaAZoCWgPQwjmkNRCyWpuQJSGlFKUaBVNgAFoFkdAk4/KOYIBzXV9lChoBmgJaA9DCAJhp1g1unFAlIaUUpRoFU2gAWgWR0CTkA3qRlpXdX2UKGgGaAloD0MIHAqfrcN6cUCUhpRSlGgVTQACaBZHQJOQeP3i7051ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
Bereshit-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddff02db2601da333c291da62a612145d903f68ab38187ad7c194f452d18c554
3
+ size 87929
Bereshit-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b41928a9edb713889b014070592bfc909e38d339fd3cbd7c5810bf1b58f2f7da
3
+ size 43393
Bereshit-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Bereshit-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 242.38 +/- 15.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1c0072940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd1c00729d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1c0072a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd1c0072af0>", "_build": "<function ActorCriticPolicy._build at 0x7fd1c0072b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fd1c0072c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd1c0072ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd1c0072d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd1c0072dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd1c0072e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1c0072ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd1c0072f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd1c006e6f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677762831830691842, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADqIST4xwn0+oRoxvmEUgb6c/6q8Nk8IvQAAAAAAAAAAANKaPF/rtD5ABU++5iCEvnYeeTz/DSm9AAAAAAAAAADNS249w4FZuv5jFbpRVAq5z1U+Ohe7NzkAAIA/AACAP808MjuuxYG6XYnytl5X6DBYB9O6XUkMNgAAgD8AAIA/+vYSvtxq3D4OeUM+So5qvgD+kjzcj5a9AAAAAAAAAAAzi+u7KeRrup6eQbpAKDK5kc3uul6mdTkAAIA/AACAP2ZURT04kq+7UkH6uqpVkjwL4RK91gB4PQAAgD8AAIA/AKDCO/ZMHboFemy6hLAgtoCFCTnLFYc5AACAPwAAgD/N+qg9FLzMuv0TBrxyOUO8T8XKu54aK70AAIA/AACAP4BaYj3D0Q+6TvOuuuB1iLXcoz+4ihTIOQAAgD8AAIA/gG7bPY/2AbqR9bK6BoYluc538zmqVNs5AACAPwAAgD/zpQG+iHwjP93r2D2HS2m+zzelu639JT4AAAAAAAAAADMzIrt0uls+KWmIvVSbIr6VP329prlwvQAAAAAAAAAAGsW5vR0IlD9K08m+TaPsviiZ/7w+Lyi+AAAAAAAAAAAAhYQ9t5+hP1L2Oj5TNaK+t+X1PYK8n7wAAAAAAAAAAOZeNL0zYLw/9/GgvrcZRT0wvzM6K6fGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInxwFiIILb0CUhpRSlIwBbJRNMQGMAXSUR0CS+hlMRHwxdX2UKGgGaAloD0MITpgwmtVZcUCUhpRSlGgVTWEBaBZHQJL7EHIIWxh1fZQoaAZoCWgPQwg+CWzOgWtwQJSGlFKUaBVNRQFoFkdAkvuAmVqveXV9lChoBmgJaA9DCIguqG+Ze2xAlIaUUpRoFU00AWgWR0CS+4xDLKV6dX2UKGgGaAloD0MIi6pf6Xy5bUCUhpRSlGgVTUEBaBZHQJL7vQSi/PB1fZQoaAZoCWgPQwh9sIwN3WxuQJSGlFKUaBVNawFoFkdAkv5prgwXZXV9lChoBmgJaA9DCHhflQuV+XBAlIaUUpRoFU0ZAWgWR0CS/rwM6RyPdX2UKGgGaAloD0MIVu9wO3S2cECUhpRSlGgVTR8BaBZHQJL/JGI9C/p1fZQoaAZoCWgPQwia7nVSXx9vQJSGlFKUaBVNRQFoFkdAkv+DTa0x/XV9lChoBmgJaA9DCBZQqKfP+HFAlIaUUpRoFU0dAWgWR0CS/5xNIsiCdX2UKGgGaAloD0MIeAjjp/GaaECUhpRSlGgVTZUCaBZHQJMAW5lOGj91fZQoaAZoCWgPQwjOOXgmNNFrQJSGlFKUaBVNWAFoFkdAkwBxIatLc3V9lChoBmgJaA9DCCFcAYX6nG9AlIaUUpRoFU0ZAWgWR0CTAJwFC9h7dX2UKGgGaAloD0MIKqio+lVgcECUhpRSlGgVTZQBaBZHQJMC+MBIWgx1fZQoaAZoCWgPQwj9EYYBS6JJQJSGlFKUaBVL5mgWR0CTA7aCL/CJdX2UKGgGaAloD0MIIQIOoYpwckCUhpRSlGgVTUkBaBZHQJMD0cdYGMZ1fZQoaAZoCWgPQwjECrd8JEduQJSGlFKUaBVNOwFoFkdAkwZg5/9YOnV9lChoBmgJaA9DCGZpp+ayGXJAlIaUUpRoFU0WAWgWR0CTBtYa5wwTdX2UKGgGaAloD0MIRzgteNHYcECUhpRSlGgVTREBaBZHQJMHG8f3evZ1fZQoaAZoCWgPQwjDu1zE9w5wQJSGlFKUaBVNZAFoFkdAkyG/a11GLHV9lChoBmgJaA9DCKYr2EZ8G3FAlIaUUpRoFU0UAWgWR0CTIiw0fozOdX2UKGgGaAloD0MI5bZ9jzo9cECUhpRSlGgVTScBaBZHQJMi5YwIt191fZQoaAZoCWgPQwhyNh0BXOFuQJSGlFKUaBVNeQFoFkdAkyLnHWBjF3V9lChoBmgJaA9DCF6EKcqlCHFAlIaUUpRoFU08AWgWR0CTIudJJ5E/dX2UKGgGaAloD0MIknnkD4bzcECUhpRSlGgVTTkBaBZHQJMjBrGipNt1fZQoaAZoCWgPQwiB0Hr4MjRsQJSGlFKUaBVNJgFoFkdAkyZNrwe/6HV9lChoBmgJaA9DCAAbECHum3JAlIaUUpRoFU1vAWgWR0CTJo3QD3dsdX2UKGgGaAloD0MIq1s9Jz05cECUhpRSlGgVTWoBaBZHQJMmj0pVjqh1fZQoaAZoCWgPQwiSBre1hS5uQJSGlFKUaBVNcwFoFkdAkyamAskIHHV9lChoBmgJaA9DCLafjPHhC3NAlIaUUpRoFU0IAWgWR0CTKK69kBjndX2UKGgGaAloD0MIzvxqDtASckCUhpRSlGgVTRoBaBZHQJMoxchTwUh1fZQoaAZoCWgPQwh1PdF1YcptQJSGlFKUaBVN2AFoFkdAkykzi0fHP3V9lChoBmgJaA9DCIT1fw7zdXBAlIaUUpRoFU0nAWgWR0CTKYUNKAavdX2UKGgGaAloD0MIKxiV1Ikeb0CUhpRSlGgVTZ8BaBZHQJMrOa8YhuB1fZQoaAZoCWgPQwjvkGKABE9wQJSGlFKUaBVNpQFoFkdAkyuErwvxpnV9lChoBmgJaA9DCF8KD5odaHFAlIaUUpRoFU08AWgWR0CTLot3fQ8fdX2UKGgGaAloD0MINIRjlr2QckCUhpRSlGgVTVUBaBZHQJMu3XXiBGx1fZQoaAZoCWgPQwgE5bZ9j/VuQJSGlFKUaBVNfwFoFkdAkzAjn7pFC3V9lChoBmgJaA9DCIe/JmsU4XFAlIaUUpRoFU1nAWgWR0CTMETI/7iydX2UKGgGaAloD0MImiZsPxlOcUCUhpRSlGgVTXQBaBZHQJMw3863iJh1fZQoaAZoCWgPQwholC79y1xtQJSGlFKUaBVNIgFoFkdAkzEuWBz3iHV9lChoBmgJaA9DCB8UlKIVt2tAlIaUUpRoFU0xAWgWR0CTMX5rxiG4dX2UKGgGaAloD0MI83NDU/bLcECUhpRSlGgVTaEBaBZHQJMyTHggow51fZQoaAZoCWgPQwj9wcBzb/RyQJSGlFKUaBVNUwFoFkdAkzLR/ZuhsnV9lChoBmgJaA9DCMPUljrIMXFAlIaUUpRoFU1pAWgWR0CTM5bAk9lmdX2UKGgGaAloD0MIiIOEKF8Ob0CUhpRSlGgVTTwBaBZHQJM0gzEaVD91fZQoaAZoCWgPQwhz2eicHwNxQJSGlFKUaBVNaQFoFkdAkzWEmx+rl3V9lChoBmgJaA9DCN/A5EbRo3FAlIaUUpRoFU1eAWgWR0CTNfdhy8zzdX2UKGgGaAloD0MILq2GxL1jcUCUhpRSlGgVTS8BaBZHQJM2RtxdY4h1fZQoaAZoCWgPQwhgsBu27Y9xQJSGlFKUaBVNkwFoFkdAkzbiT+vQnnV9lChoBmgJaA9DCOW36GSpJW5AlIaUUpRoFU1dAWgWR0CTN10/W1+idX2UKGgGaAloD0MINe7Nbxh9cUCUhpRSlGgVTS8BaBZHQJM4ll7MPjJ1fZQoaAZoCWgPQwi7uI0GcA5yQJSGlFKUaBVNUwFoFkdAkzoWG/N7jXV9lChoBmgJaA9DCAw9YvScdnJAlIaUUpRoFU1QAWgWR0CTO2aFmFrVdX2UKGgGaAloD0MI3XwjumficUCUhpRSlGgVTVQBaBZHQJM9IKD01651fZQoaAZoCWgPQwgC1NSytaxtQJSGlFKUaBVNTQFoFkdAkz0+AVfu1HV9lChoBmgJaA9DCEVI3c6+wm5AlIaUUpRoFU05AWgWR0CTPlBt1p0wdX2UKGgGaAloD0MItHVwsLe1cECUhpRSlGgVTXQBaBZHQJM+YLUkOZt1fZQoaAZoCWgPQwjJWkOpfeZwQJSGlFKUaBVNUAFoFkdAkz6sZtNzsHV9lChoBmgJaA9DCHV4COMn1G1AlIaUUpRoFU1FAWgWR0CTQcPNFBppdX2UKGgGaAloD0MIiVxwBn8sa0CUhpRSlGgVTXIBaBZHQJNCrQZ4wAV1fZQoaAZoCWgPQwh4exACMn1xQJSGlFKUaBVNNQFoFkdAk0PawpvxY3V9lChoBmgJaA9DCLQh/8yg629AlIaUUpRoFU1WAWgWR0CTRFCMglnidX2UKGgGaAloD0MIW+m12VjHcECUhpRSlGgVTY4BaBZHQJNfrRMN+b51fZQoaAZoCWgPQwiqm4u/rQVyQJSGlFKUaBVN1wFoFkdAk2Sy+pOvdXV9lChoBmgJaA9DCAZHyaszNHBAlIaUUpRoFU1CAWgWR0CTZLMUh3aBdX2UKGgGaAloD0MIjpWYZ+X7cECUhpRSlGgVTTABaBZHQJNk0KQaJhx1fZQoaAZoCWgPQwg3GsBbIDFwQJSGlFKUaBVNOQFoFkdAk2VUdeY2KnV9lChoBmgJaA9DCACPqFBd/m5AlIaUUpRoFU3aAmgWR0CTZp/5+H8CdX2UKGgGaAloD0MIlMFR8uqzckCUhpRSlGgVTQIBaBZHQJNnrhUBGQV1fZQoaAZoCWgPQwjZlCu8y3JwQJSGlFKUaBVNsAFoFkdAk2ilLFn7HnV9lChoBmgJaA9DCDpBmxx+D3BAlIaUUpRoFU3VAWgWR0CTaOFOO802dX2UKGgGaAloD0MIs1w2OmcSbkCUhpRSlGgVTQECaBZHQJNo4oTfzjF1fZQoaAZoCWgPQwj44ov2uJFxQJSGlFKUaBVN0QFoFkdAk2xHgccU/XV9lChoBmgJaA9DCNjYJao3iW5AlIaUUpRoFU3MAWgWR0CTby6Rhc7hdX2UKGgGaAloD0MI6pYd4h87b0CUhpRSlGgVTS8BaBZHQJNyTKdQO4J1fZQoaAZoCWgPQwjhtUsbToZxQJSGlFKUaBVNIAJoFkdAk3JpTuOS4nV9lChoBmgJaA9DCOW4UzqYk3BAlIaUUpRoFU07AWgWR0CTcsX9R77bdX2UKGgGaAloD0MIgLdAguLbb0CUhpRSlGgVTQECaBZHQJNzGNvOyFB1fZQoaAZoCWgPQwjkafmBKw5wQJSGlFKUaBVNXgFoFkdAk3TNIPK+z3V9lChoBmgJaA9DCC81Qj9T43BAlIaUUpRoFU0fAWgWR0CTdPZha1TjdX2UKGgGaAloD0MIAcEcPf7ObUCUhpRSlGgVTTUBaBZHQJN1Ci48U211fZQoaAZoCWgPQwgyO4veqSZtQJSGlFKUaBVNxQJoFkdAk3WuH31zyXV9lChoBmgJaA9DCLsPQGqTNG9AlIaUUpRoFU1FAWgWR0CTdorMC9ytdX2UKGgGaAloD0MIaY6s/LKycUCUhpRSlGgVTQICaBZHQJN3A5Qxesx1fZQoaAZoCWgPQwhW1cvvtMByQJSGlFKUaBVNoQFoFkdAk3f80cfeUXV9lChoBmgJaA9DCHS2gNB6xF9AlIaUUpRoFU3oA2gWR0CTeQuSfUWmdX2UKGgGaAloD0MIdzBinwBkcUCUhpRSlGgVTUYBaBZHQJN5skfLcKx1fZQoaAZoCWgPQwhFLc2tEMpuQJSGlFKUaBVN/AFoFkdAk3o51A7gbnV9lChoBmgJaA9DCKaAtP8BlXBAlIaUUpRoFU02AWgWR0CTfBU+LWI5dX2UKGgGaAloD0MIzok9tE/CcECUhpRSlGgVTfoBaBZHQJN+Gu7pV0d1fZQoaAZoCWgPQwhxVG6i1r9xQJSGlFKUaBVNMAFoFkdAk4Aa9GqgiHV9lChoBmgJaA9DCLhYUYPpv3BAlIaUUpRoFU02AWgWR0CThLC7btZ3dX2UKGgGaAloD0MIyuGTTuSccECUhpRSlGgVTW8BaBZHQJOHQMBp5/t1fZQoaAZoCWgPQwhM4UGz6wpuQJSGlFKUaBVNnwFoFkdAk4dVKwpvxnV9lChoBmgJaA9DCPDd5o3TI3BAlIaUUpRoFU17AWgWR0CTiFD9wWFfdX2UKGgGaAloD0MI5ueGpuzcb0CUhpRSlGgVTd0BaBZHQJOK1EqlP8B1fZQoaAZoCWgPQwjmkNRCyWpuQJSGlFKUaBVNgAFoFkdAk4/KOYIBzXV9lChoBmgJaA9DCAJhp1g1unFAlIaUUpRoFU2gAWgWR0CTkA3qRlpXdX2UKGgGaAloD0MIHAqfrcN6cUCUhpRSlGgVTQACaBZHQJOQeP3i7051ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (250 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 242.3781786462599, "std_reward": 15.24857026298772, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T15:03:38.292023"}