--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-fake-food results: [] --- # finetuned-fake-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.4855 - Accuracy: 0.8548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6061 | 1.0 | 176 | 0.5937 | 0.6855 | | 0.481 | 2.0 | 352 | 0.5138 | 0.8226 | | 0.5522 | 3.0 | 528 | 0.4973 | 0.8065 | | 0.4092 | 4.0 | 704 | 0.5557 | 0.7903 | | 0.4882 | 5.0 | 880 | 0.4998 | 0.7984 | | 0.4442 | 6.0 | 1056 | 0.4647 | 0.8387 | | 0.5749 | 7.0 | 1232 | 0.4464 | 0.8306 | | 0.4529 | 8.0 | 1408 | 0.5366 | 0.8065 | | 0.5287 | 9.0 | 1584 | 0.4633 | 0.8387 | | 0.3821 | 10.0 | 1760 | 0.4983 | 0.8387 | | 0.2409 | 11.0 | 1936 | 0.4855 | 0.8548 | | 0.2025 | 12.0 | 2112 | 0.5102 | 0.8387 | | 0.2045 | 13.0 | 2288 | 0.4942 | 0.8387 | | 0.4097 | 14.0 | 2464 | 0.4954 | 0.8387 | | 0.5798 | 15.0 | 2640 | 0.4941 | 0.8387 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1