File size: 1,911 Bytes
0908706
 
 
08c4f18
0908706
 
 
 
 
 
c5a4c7c
0908706
 
 
 
 
 
 
c5a4c7c
0908706
e5058f5
 
0908706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5058f5
 
0908706
 
33d3090
e5058f5
 
0455ba4
2a34278
e5058f5
3f5bde0
8f9b7e5
0908706
 
 
e5058f5
 
 
 
 
 
 
 
0908706
 
 
 
 
 
0455ba4
0908706
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: itsLeen/swin-large-ai-or-not
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-large-ai-or-not
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-large-ai-or-not

This model is a fine-tuned version of [itsLeen/swin-large-ai-or-not](https://huggingface.co/itsLeen/swin-large-ai-or-not) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2806
- Accuracy: 0.9690

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 40
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.2653        | 1.7699  | 50   | 0.2818          | 0.9558   |
| 0.2522        | 3.5398  | 100  | 0.2812          | 0.9646   |
| 0.2616        | 5.3097  | 150  | 0.2810          | 0.9690   |
| 0.2541        | 7.0796  | 200  | 0.2808          | 0.9690   |
| 0.2536        | 8.8496  | 250  | 0.2807          | 0.9690   |
| 0.2534        | 10.6195 | 300  | 0.2806          | 0.9690   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1