File size: 1,911 Bytes
0908706 08c4f18 0908706 c5a4c7c 0908706 c5a4c7c 0908706 e5058f5 0908706 e5058f5 0908706 33d3090 e5058f5 0455ba4 2a34278 e5058f5 3f5bde0 8f9b7e5 0908706 e5058f5 0908706 0455ba4 0908706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: apache-2.0
base_model: itsLeen/swin-large-ai-or-not
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-large-ai-or-not
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-large-ai-or-not
This model is a fine-tuned version of [itsLeen/swin-large-ai-or-not](https://huggingface.co/itsLeen/swin-large-ai-or-not) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2806
- Accuracy: 0.9690
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 40
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.2653 | 1.7699 | 50 | 0.2818 | 0.9558 |
| 0.2522 | 3.5398 | 100 | 0.2812 | 0.9646 |
| 0.2616 | 5.3097 | 150 | 0.2810 | 0.9690 |
| 0.2541 | 7.0796 | 200 | 0.2808 | 0.9690 |
| 0.2536 | 8.8496 | 250 | 0.2807 | 0.9690 |
| 0.2534 | 10.6195 | 300 | 0.2806 | 0.9690 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
|