itsLeen's picture
itsLeen/swin-large-ai-or-nott
33d3090 verified
|
raw
history blame
2.11 kB
metadata
library_name: transformers
license: apache-2.0
base_model: itsLeen/swin-large-ai-or-not
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-large-ai-or-not
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train[:2000]
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.98

swin-large-ai-or-not

This model is a fine-tuned version of itsLeen/swin-large-ai-or-not on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1841
  • Accuracy: 0.98

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0095 4.0 100 0.2067 0.97
0.0013 8.0 200 0.1890 0.9725
0.0014 12.0 300 0.2007 0.9725
0.0003 16.0 400 0.1674 0.98
0.0001 20.0 500 0.1841 0.98

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1