--- license: cc-by-4.0 base_model: allegro/herbert-large-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: herbert-large-cased_nli results: [] --- # herbert-large-cased_nli This model is a fine-tuned version of [allegro/herbert-large-cased](https://huggingface.co/allegro/herbert-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0905 - Accuracy: 0.77 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 625 | 0.6466 | 0.751 | | No log | 2.0 | 1250 | 0.5856 | 0.79 | | 0.5915 | 3.0 | 1875 | 0.6142 | 0.761 | | 0.5915 | 4.0 | 2500 | 0.6803 | 0.78 | | 0.4204 | 5.0 | 3125 | 0.7207 | 0.786 | | 0.4204 | 6.0 | 3750 | 0.7956 | 0.777 | | 0.4204 | 7.0 | 4375 | 0.7964 | 0.787 | | 0.306 | 8.0 | 5000 | 0.7869 | 0.766 | | 0.306 | 9.0 | 5625 | 0.8671 | 0.766 | | 0.2192 | 10.0 | 6250 | 0.8832 | 0.778 | | 0.2192 | 11.0 | 6875 | 0.9147 | 0.768 | | 0.1595 | 12.0 | 7500 | 1.1113 | 0.756 | | 0.1595 | 13.0 | 8125 | 1.0984 | 0.761 | | 0.1595 | 14.0 | 8750 | 1.3107 | 0.758 | | 0.1288 | 15.0 | 9375 | 1.2892 | 0.764 | | 0.1288 | 16.0 | 10000 | 1.5291 | 0.741 | | 0.1037 | 17.0 | 10625 | 1.2105 | 0.786 | | 0.1037 | 18.0 | 11250 | 1.3468 | 0.78 | | 0.1037 | 19.0 | 11875 | 1.5642 | 0.758 | | 0.0864 | 20.0 | 12500 | 1.5304 | 0.768 | | 0.0864 | 21.0 | 13125 | 1.4310 | 0.776 | | 0.0728 | 22.0 | 13750 | 1.5636 | 0.762 | | 0.0728 | 23.0 | 14375 | 1.5032 | 0.766 | | 0.0583 | 24.0 | 15000 | 1.7275 | 0.763 | | 0.0583 | 25.0 | 15625 | 1.6669 | 0.758 | | 0.0583 | 26.0 | 16250 | 1.6029 | 0.767 | | 0.0453 | 27.0 | 16875 | 1.6239 | 0.771 | | 0.0453 | 28.0 | 17500 | 1.6007 | 0.781 | | 0.0335 | 29.0 | 18125 | 1.7028 | 0.766 | | 0.0335 | 30.0 | 18750 | 1.8058 | 0.776 | | 0.0335 | 31.0 | 19375 | 1.7894 | 0.766 | | 0.0267 | 32.0 | 20000 | 1.8930 | 0.765 | | 0.0267 | 33.0 | 20625 | 1.8582 | 0.775 | | 0.022 | 34.0 | 21250 | 1.9610 | 0.764 | | 0.022 | 35.0 | 21875 | 2.0128 | 0.775 | | 0.0163 | 36.0 | 22500 | 2.0248 | 0.773 | | 0.0163 | 37.0 | 23125 | 2.0203 | 0.77 | | 0.0163 | 38.0 | 23750 | 2.0615 | 0.77 | | 0.0115 | 39.0 | 24375 | 2.0787 | 0.769 | | 0.0115 | 40.0 | 25000 | 2.0905 | 0.77 | ### Framework versions - Transformers 4.39.3 - Pytorch 1.11.0a0+17540c5 - Datasets 2.20.0 - Tokenizers 0.15.2