izimmerman commited on
Commit
fbf8871
1 Parent(s): 8ea1ca1

first PPO lunar lander-1e6 timesteps

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 252.28 +/- 20.85
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f332d1e4550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f332d1e45e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f332d1e4670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f332d1e4700>", "_build": "<function ActorCriticPolicy._build at 0x7f332d1e4790>", "forward": "<function ActorCriticPolicy.forward at 0x7f332d1e4820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f332d1e48b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f332d1e4940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f332d1e49d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f332d1e4a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f332d1e4af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f332d1e4b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f332d1dac90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677024705266830173, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2pY7044ro/2cQ1vpHlc75K9r69KhRMvAAAAAAAAAAAKi2MPsTG+j5S2Ri+j1aDvgvDYD13ojW9AAAAAAAAAADNaaa8MTllP6Ykoj0AcGq+Oos+vND/rT0AAAAAAAAAAGYRBL7yZVI/dgarPCGrZ77nq4+9PSiwPQAAAAAAAAAAJimfvdDmJT8r3lA+3ftivsRurTz4AIE8AAAAAAAAAAAqfJ0+adaFP4DF6j38pXS+FgYxPn5X/7wAAAAAAAAAAHNenT3V8zA+oXiJvbBMWb62in28uiKSOwAAAAAAAAAAAPJ+PJzMfD/Wrd88sARgvg52sTzVpYk9AAAAAAAAAACzmWi9A9AHP/bP9j26cE2+SnuCvIBIXT0AAAAAAAAAABNHOD5SB5e7HdWMufQPsTapR+e8rIKmOAAAgD8AAIA/Wi+vPQRgez+lamc9a1+QvlgAGz3h1zI9AAAAAAAAAAAO2re+r/hoP9eeGr0X4p2+PIdpvkKlMz0AAAAAAAAAAADInzwFC7o/Tg2cPjyTfj70cYI7DKa8PQAAAAAAAAAAs2kxvthllz/nTMy9NCaCvpAsS74sgZ49AAAAAAAAAAC6ugq+M6e0PxbD3L47+Wm+kiBDvoKt0b0AAAAAAAAAANoGmD0pdGm6dhHfuubUpTSqpDW7zjAAOgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHJlH/uCBbkCUhpRSlIwBbJRNegGMAXSUR0CUsQm3vx6OdX2UKGgGaAloD0MIhgK2g5GiakCUhpRSlGgVTcQBaBZHQJSzlrEcbR51fZQoaAZoCWgPQwg+zcmLTO9vQJSGlFKUaBVNegFoFkdAlLaIqCpWFXV9lChoBmgJaA9DCDZc5J6uoGxAlIaUUpRoFU1WAWgWR0CUu4IZZSvUdX2UKGgGaAloD0MIf4RhwBICb0CUhpRSlGgVTWYBaBZHQJS9G8zyjHp1fZQoaAZoCWgPQwg5RNycCl9wQJSGlFKUaBVNdwFoFkdAlL8O/pMYdnV9lChoBmgJaA9DCBMNUvAUn29AlIaUUpRoFU2LAWgWR0CUv+0qpcX4dX2UKGgGaAloD0MIRnu8kI5qcUCUhpRSlGgVTVEBaBZHQJTEE3974SJ1fZQoaAZoCWgPQwhfuHNhJOVuQJSGlFKUaBVN4AFoFkdAlMZQfyPMjnV9lChoBmgJaA9DCDnsvmP4sWxAlIaUUpRoFU08AWgWR0CUxpb7CSA6dX2UKGgGaAloD0MIMC3qk5yocECUhpRSlGgVTSkBaBZHQJTKlLf1pTN1fZQoaAZoCWgPQwj76NSVT0NgQJSGlFKUaBVN6ANoFkdAlMwX3L3bmHV9lChoBmgJaA9DCOQtVz82YW1AlIaUUpRoFU3QAWgWR0CUzPvH93r2dX2UKGgGaAloD0MIpwUv+oo6bUCUhpRSlGgVTZIBaBZHQJTNdu2qkuZ1fZQoaAZoCWgPQwgnM95W+hpsQJSGlFKUaBVNzAFoFkdAlM825xzaK3V9lChoBmgJaA9DCPHZOjhYvXBAlIaUUpRoFU3bAWgWR0CUz3Aood+5dX2UKGgGaAloD0MIGXCWkiW+cUCUhpRSlGgVTbIBaBZHQJTQPIHTqjd1fZQoaAZoCWgPQwg6QDBHD9ZwQJSGlFKUaBVNSQFoFkdAlNOA57w8XHV9lChoBmgJaA9DCHtmSYCahXBAlIaUUpRoFU3BAWgWR0CU1n8uzyBkdX2UKGgGaAloD0MIaMu5FFdvb0CUhpRSlGgVTVwBaBZHQJTW6XJHRTl1fZQoaAZoCWgPQwh7ouvCzz1wQJSGlFKUaBVNogFoFkdAlOwyW3Sa3XV9lChoBmgJaA9DCPJ4Wn7geHBAlIaUUpRoFU2VAWgWR0CU7H2jO9nLdX2UKGgGaAloD0MI6udNRSp/XkCUhpRSlGgVTegDaBZHQJTukM8YAKh1fZQoaAZoCWgPQwhX6lkQSqFwQJSGlFKUaBVNdQFoFkdAlO8SZWq95HV9lChoBmgJaA9DCFnbFI+LTXBAlIaUUpRoFU2ZAWgWR0CU71J8OTaCdX2UKGgGaAloD0MIQrRWtLnta0CUhpRSlGgVTVkBaBZHQJTxKPeYUnJ1fZQoaAZoCWgPQwjqkQa3taRwQJSGlFKUaBVNPgFoFkdAlPH3J9y93HV9lChoBmgJaA9DCPvL7skDOXBAlIaUUpRoFU2AAWgWR0CU8gIiTt9hdX2UKGgGaAloD0MIf9sTJDYDbUCUhpRSlGgVTcEBaBZHQJTybbsWweN1fZQoaAZoCWgPQwjTLqaZ7lVsQJSGlFKUaBVNUAFoFkdAlPM+xfOUuHV9lChoBmgJaA9DCDZzSGohcm9AlIaUUpRoFU1fAWgWR0CU80rilzltdX2UKGgGaAloD0MIDqK1os1ib0CUhpRSlGgVTYEBaBZHQJTzb7ALy+Z1fZQoaAZoCWgPQwimmIOg461wQJSGlFKUaBVNjgFoFkdAlPObAk9lmXV9lChoBmgJaA9DCMu+K4L/8T9AlIaUUpRoFU0QAWgWR0CU9PB0p3HJdX2UKGgGaAloD0MILbEyGjn+cECUhpRSlGgVTU8BaBZHQJT2hAprk811fZQoaAZoCWgPQwhkWwacpQRNQJSGlFKUaBVNMAFoFkdAlPcvq1PWQXV9lChoBmgJaA9DCLCNeLIbIm1AlIaUUpRoFU1uAWgWR0CU+kG96C17dX2UKGgGaAloD0MIrmad8f3BbUCUhpRSlGgVTRACaBZHQJT9TxQSBbx1fZQoaAZoCWgPQwjRdeEHZ+9rQJSGlFKUaBVNYwFoFkdAlP2D4UN8V3V9lChoBmgJaA9DCFT83xGVeW5AlIaUUpRoFU1xAWgWR0CU/r4Uvf0mdX2UKGgGaAloD0MIYJFfP4Q1cUCUhpRSlGgVTTIBaBZHQJT/Zq59Vm11fZQoaAZoCWgPQwhd3EYDOOJwQJSGlFKUaBVNiQFoFkdAlQSPHLida3V9lChoBmgJaA9DCJZDi2znJG5AlIaUUpRoFU1qAWgWR0CVBNwW3z+WdX2UKGgGaAloD0MIUwPN59zkcUCUhpRSlGgVTXgBaBZHQJUGKcslLOB1fZQoaAZoCWgPQwgwaCEBoxc9QJSGlFKUaBVNEAFoFkdAlQZqfSQYDXV9lChoBmgJaA9DCKhTHt0IvVBAlIaUUpRoFU0LAWgWR0CVB0rjo6jndX2UKGgGaAloD0MIx2KbVHTUcUCUhpRSlGgVTboBaBZHQJUHsYDTz/Z1fZQoaAZoCWgPQwiPqFDdHBtwQJSGlFKUaBVNjgFoFkdAlQfN4RmK7HV9lChoBmgJaA9DCD19BP5w8G5AlIaUUpRoFU1eAWgWR0CVB922G7BgdX2UKGgGaAloD0MIS6/NxkpDb0CUhpRSlGgVTZ8BaBZHQJUIGNaQmu11fZQoaAZoCWgPQwiFJR5QtpBxQJSGlFKUaBVN6AFoFkdAlQjn1jAi3XV9lChoBmgJaA9DCFK2SNoNWXBAlIaUUpRoFU1LAWgWR0CVD5JHiFTOdX2UKGgGaAloD0MIRImWPJ5+TECUhpRSlGgVS+NoFkdAlRDs+JP69HV9lChoBmgJaA9DCLeyRGeZPnJAlIaUUpRoFU1OAWgWR0CVERnHNorXdX2UKGgGaAloD0MIDmd+NUd+cECUhpRSlGgVTXkBaBZHQJURguBczIp1fZQoaAZoCWgPQwjacFga+ANQQJSGlFKUaBVNDAFoFkdAlRGECV8kU3V9lChoBmgJaA9DCLDmAMGcuWpAlIaUUpRoFU2lAWgWR0CVFDbKzRhMdX2UKGgGaAloD0MIaAQb1/+nckCUhpRSlGgVTfUBaBZHQJUUrcZccEN1fZQoaAZoCWgPQwi/SdOgaK5xQJSGlFKUaBVNSwFoFkdAlRaPDpC8e3V9lChoBmgJaA9DCOfIyi+D229AlIaUUpRoFU1eAWgWR0CVFwlAu7HydX2UKGgGaAloD0MI3bQZpyFtbECUhpRSlGgVTUwBaBZHQJUXZbhWHUN1fZQoaAZoCWgPQwhS1m8mJohtQJSGlFKUaBVNoAFoFkdAlRfgm3OObXV9lChoBmgJaA9DCJSjAFGw4m9AlIaUUpRoFU2GAWgWR0CVGMIppeu3dX2UKGgGaAloD0MIf2jmybXBbkCUhpRSlGgVTZkBaBZHQJUZKyAxzq91fZQoaAZoCWgPQwidEDroEr9aQJSGlFKUaBVN6ANoFkdAlS+Ia5wwTXV9lChoBmgJaA9DCN51NuQf9XBAlIaUUpRoFU1UAWgWR0CVMPswL3K0dX2UKGgGaAloD0MIcvikE8kXcECUhpRSlGgVTUkBaBZHQJUyRPLxI8R1fZQoaAZoCWgPQwiQTIdOT9xuQJSGlFKUaBVNowFoFkdAlTXwCCBf8nV9lChoBmgJaA9DCAk1Q6qooW5AlIaUUpRoFU1lAWgWR0CVN7vjOs1bdX2UKGgGaAloD0MI/U0oRMClPkCUhpRSlGgVTRgBaBZHQJU5yzByjpN1fZQoaAZoCWgPQwjfbd44qZFwQJSGlFKUaBVNUwFoFkdAlTr5e3QUpXV9lChoBmgJaA9DCGSSkbMwfHFAlIaUUpRoFU1bAWgWR0CVPD7m+0w8dX2UKGgGaAloD0MIy9WPTXIVb0CUhpRSlGgVTYkBaBZHQJU99yzXz191fZQoaAZoCWgPQwh8Zd6q6ypwQJSGlFKUaBVNawFoFkdAlT61mvnr6nV9lChoBmgJaA9DCJxTyQBQgGxAlIaUUpRoFU1aAWgWR0CVQ05HVf/ndX2UKGgGaAloD0MItafknNgzckCUhpRSlGgVTVgBaBZHQJVIPMUypJh1fZQoaAZoCWgPQwg7cM6I0l1bQJSGlFKUaBVN6ANoFkdAlU2UtZmqYXV9lChoBmgJaA9DCJ4mM95WPW1AlIaUUpRoFU31AmgWR0CVTaPV/c33dX2UKGgGaAloD0MIB5j5Dn60b0CUhpRSlGgVTYACaBZHQJVN2MZP2wp1fZQoaAZoCWgPQwgyIeaSKrBwQJSGlFKUaBVNTQFoFkdAlU4rRfF72XV9lChoBmgJaA9DCGk7pu7K4V1AlIaUUpRoFU3oA2gWR0CVTvnSv1UVdX2UKGgGaAloD0MIsaIG0zBgSECUhpRSlGgVTQUBaBZHQJVPBMTN+sp1fZQoaAZoCWgPQwh2btqM01RtQJSGlFKUaBVNRAFoFkdAlU+x91EE1XV9lChoBmgJaA9DCKLQsu7fqXBAlIaUUpRoFU0rAWgWR0CVUPAKOT7mdX2UKGgGaAloD0MIYabtX1mXcUCUhpRSlGgVTWgBaBZHQJVRvDKoybh1fZQoaAZoCWgPQwgKoYMuYStrQJSGlFKUaBVNoAFoFkdAlVKCIP9UCXV9lChoBmgJaA9DCCGSIcfWcmRAlIaUUpRoFU3oA2gWR0CVVpNB4UvgdX2UKGgGaAloD0MInigJibRdcECUhpRSlGgVTXgBaBZHQJVZY690zTF1fZQoaAZoCWgPQwgs8YCyKT5uQJSGlFKUaBVNxgFoFkdAlVnsWsRxtHV9lChoBmgJaA9DCJ4mM97WWGVAlIaUUpRoFU3oA2gWR0CVWkww0wajdX2UKGgGaAloD0MIesVTj3RXcECUhpRSlGgVTV0BaBZHQJVcEoNNJvp1fZQoaAZoCWgPQwhh4STN3wRxQJSGlFKUaBVNZgFoFkdAlV0YhllK9XV9lChoBmgJaA9DCKXd6GM+FEBAlIaUUpRoFUv4aBZHQJVdMrPMSsd1fZQoaAZoCWgPQwj9a3nl+odtQJSGlFKUaBVNegFoFkdAlV2FMIu5BnV9lChoBmgJaA9DCOMXXklyIG1AlIaUUpRoFU1fAWgWR0CVXZw4sEq2dX2UKGgGaAloD0MIkDAMWHJPcUCUhpRSlGgVTXoBaBZHQJVdsw1zhgp1fZQoaAZoCWgPQwiy1Hq/UfduQJSGlFKUaBVNYgFoFkdAlV5ak/KQrHV9lChoBmgJaA9DCB13SgdrWmxAlIaUUpRoFU1bAWgWR0CVX0Q0GeMAdX2UKGgGaAloD0MIT1d3LDazbkCUhpRSlGgVTQoDaBZHQJVfZxp+MIh1fZQoaAZoCWgPQwiEukihLI9vQJSGlFKUaBVNYAFoFkdAlWAMzZYgaHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ilana_lunar_PPO_model_1000000.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af282f69d88a4c29d95fa5d047d2d64e3b8b4ece0a4b1a4c7357f284bf74eeba
3
+ size 147424
ilana_lunar_PPO_model_1000000/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ilana_lunar_PPO_model_1000000/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f332d1e4550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f332d1e45e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f332d1e4670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f332d1e4700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f332d1e4790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f332d1e4820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f332d1e48b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f332d1e4940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f332d1e49d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f332d1e4a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f332d1e4af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f332d1e4b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f332d1dac90>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677024705266830173,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2pY7044ro/2cQ1vpHlc75K9r69KhRMvAAAAAAAAAAAKi2MPsTG+j5S2Ri+j1aDvgvDYD13ojW9AAAAAAAAAADNaaa8MTllP6Ykoj0AcGq+Oos+vND/rT0AAAAAAAAAAGYRBL7yZVI/dgarPCGrZ77nq4+9PSiwPQAAAAAAAAAAJimfvdDmJT8r3lA+3ftivsRurTz4AIE8AAAAAAAAAAAqfJ0+adaFP4DF6j38pXS+FgYxPn5X/7wAAAAAAAAAAHNenT3V8zA+oXiJvbBMWb62in28uiKSOwAAAAAAAAAAAPJ+PJzMfD/Wrd88sARgvg52sTzVpYk9AAAAAAAAAACzmWi9A9AHP/bP9j26cE2+SnuCvIBIXT0AAAAAAAAAABNHOD5SB5e7HdWMufQPsTapR+e8rIKmOAAAgD8AAIA/Wi+vPQRgez+lamc9a1+QvlgAGz3h1zI9AAAAAAAAAAAO2re+r/hoP9eeGr0X4p2+PIdpvkKlMz0AAAAAAAAAAADInzwFC7o/Tg2cPjyTfj70cYI7DKa8PQAAAAAAAAAAs2kxvthllz/nTMy9NCaCvpAsS74sgZ49AAAAAAAAAAC6ugq+M6e0PxbD3L47+Wm+kiBDvoKt0b0AAAAAAAAAANoGmD0pdGm6dhHfuubUpTSqpDW7zjAAOgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHJlH/uCBbkCUhpRSlIwBbJRNegGMAXSUR0CUsQm3vx6OdX2UKGgGaAloD0MIhgK2g5GiakCUhpRSlGgVTcQBaBZHQJSzlrEcbR51fZQoaAZoCWgPQwg+zcmLTO9vQJSGlFKUaBVNegFoFkdAlLaIqCpWFXV9lChoBmgJaA9DCDZc5J6uoGxAlIaUUpRoFU1WAWgWR0CUu4IZZSvUdX2UKGgGaAloD0MIf4RhwBICb0CUhpRSlGgVTWYBaBZHQJS9G8zyjHp1fZQoaAZoCWgPQwg5RNycCl9wQJSGlFKUaBVNdwFoFkdAlL8O/pMYdnV9lChoBmgJaA9DCBMNUvAUn29AlIaUUpRoFU2LAWgWR0CUv+0qpcX4dX2UKGgGaAloD0MIRnu8kI5qcUCUhpRSlGgVTVEBaBZHQJTEE3974SJ1fZQoaAZoCWgPQwhfuHNhJOVuQJSGlFKUaBVN4AFoFkdAlMZQfyPMjnV9lChoBmgJaA9DCDnsvmP4sWxAlIaUUpRoFU08AWgWR0CUxpb7CSA6dX2UKGgGaAloD0MIMC3qk5yocECUhpRSlGgVTSkBaBZHQJTKlLf1pTN1fZQoaAZoCWgPQwj76NSVT0NgQJSGlFKUaBVN6ANoFkdAlMwX3L3bmHV9lChoBmgJaA9DCOQtVz82YW1AlIaUUpRoFU3QAWgWR0CUzPvH93r2dX2UKGgGaAloD0MIpwUv+oo6bUCUhpRSlGgVTZIBaBZHQJTNdu2qkuZ1fZQoaAZoCWgPQwgnM95W+hpsQJSGlFKUaBVNzAFoFkdAlM825xzaK3V9lChoBmgJaA9DCPHZOjhYvXBAlIaUUpRoFU3bAWgWR0CUz3Aood+5dX2UKGgGaAloD0MIGXCWkiW+cUCUhpRSlGgVTbIBaBZHQJTQPIHTqjd1fZQoaAZoCWgPQwg6QDBHD9ZwQJSGlFKUaBVNSQFoFkdAlNOA57w8XHV9lChoBmgJaA9DCHtmSYCahXBAlIaUUpRoFU3BAWgWR0CU1n8uzyBkdX2UKGgGaAloD0MIaMu5FFdvb0CUhpRSlGgVTVwBaBZHQJTW6XJHRTl1fZQoaAZoCWgPQwh7ouvCzz1wQJSGlFKUaBVNogFoFkdAlOwyW3Sa3XV9lChoBmgJaA9DCPJ4Wn7geHBAlIaUUpRoFU2VAWgWR0CU7H2jO9nLdX2UKGgGaAloD0MI6udNRSp/XkCUhpRSlGgVTegDaBZHQJTukM8YAKh1fZQoaAZoCWgPQwhX6lkQSqFwQJSGlFKUaBVNdQFoFkdAlO8SZWq95HV9lChoBmgJaA9DCFnbFI+LTXBAlIaUUpRoFU2ZAWgWR0CU71J8OTaCdX2UKGgGaAloD0MIQrRWtLnta0CUhpRSlGgVTVkBaBZHQJTxKPeYUnJ1fZQoaAZoCWgPQwjqkQa3taRwQJSGlFKUaBVNPgFoFkdAlPH3J9y93HV9lChoBmgJaA9DCPvL7skDOXBAlIaUUpRoFU2AAWgWR0CU8gIiTt9hdX2UKGgGaAloD0MIf9sTJDYDbUCUhpRSlGgVTcEBaBZHQJTybbsWweN1fZQoaAZoCWgPQwjTLqaZ7lVsQJSGlFKUaBVNUAFoFkdAlPM+xfOUuHV9lChoBmgJaA9DCDZzSGohcm9AlIaUUpRoFU1fAWgWR0CU80rilzltdX2UKGgGaAloD0MIDqK1os1ib0CUhpRSlGgVTYEBaBZHQJTzb7ALy+Z1fZQoaAZoCWgPQwimmIOg461wQJSGlFKUaBVNjgFoFkdAlPObAk9lmXV9lChoBmgJaA9DCMu+K4L/8T9AlIaUUpRoFU0QAWgWR0CU9PB0p3HJdX2UKGgGaAloD0MILbEyGjn+cECUhpRSlGgVTU8BaBZHQJT2hAprk811fZQoaAZoCWgPQwhkWwacpQRNQJSGlFKUaBVNMAFoFkdAlPcvq1PWQXV9lChoBmgJaA9DCLCNeLIbIm1AlIaUUpRoFU1uAWgWR0CU+kG96C17dX2UKGgGaAloD0MIrmad8f3BbUCUhpRSlGgVTRACaBZHQJT9TxQSBbx1fZQoaAZoCWgPQwjRdeEHZ+9rQJSGlFKUaBVNYwFoFkdAlP2D4UN8V3V9lChoBmgJaA9DCFT83xGVeW5AlIaUUpRoFU1xAWgWR0CU/r4Uvf0mdX2UKGgGaAloD0MIYJFfP4Q1cUCUhpRSlGgVTTIBaBZHQJT/Zq59Vm11fZQoaAZoCWgPQwhd3EYDOOJwQJSGlFKUaBVNiQFoFkdAlQSPHLida3V9lChoBmgJaA9DCJZDi2znJG5AlIaUUpRoFU1qAWgWR0CVBNwW3z+WdX2UKGgGaAloD0MIUwPN59zkcUCUhpRSlGgVTXgBaBZHQJUGKcslLOB1fZQoaAZoCWgPQwgwaCEBoxc9QJSGlFKUaBVNEAFoFkdAlQZqfSQYDXV9lChoBmgJaA9DCKhTHt0IvVBAlIaUUpRoFU0LAWgWR0CVB0rjo6jndX2UKGgGaAloD0MIx2KbVHTUcUCUhpRSlGgVTboBaBZHQJUHsYDTz/Z1fZQoaAZoCWgPQwiPqFDdHBtwQJSGlFKUaBVNjgFoFkdAlQfN4RmK7HV9lChoBmgJaA9DCD19BP5w8G5AlIaUUpRoFU1eAWgWR0CVB922G7BgdX2UKGgGaAloD0MIS6/NxkpDb0CUhpRSlGgVTZ8BaBZHQJUIGNaQmu11fZQoaAZoCWgPQwiFJR5QtpBxQJSGlFKUaBVN6AFoFkdAlQjn1jAi3XV9lChoBmgJaA9DCFK2SNoNWXBAlIaUUpRoFU1LAWgWR0CVD5JHiFTOdX2UKGgGaAloD0MIRImWPJ5+TECUhpRSlGgVS+NoFkdAlRDs+JP69HV9lChoBmgJaA9DCLeyRGeZPnJAlIaUUpRoFU1OAWgWR0CVERnHNorXdX2UKGgGaAloD0MIDmd+NUd+cECUhpRSlGgVTXkBaBZHQJURguBczIp1fZQoaAZoCWgPQwjacFga+ANQQJSGlFKUaBVNDAFoFkdAlRGECV8kU3V9lChoBmgJaA9DCLDmAMGcuWpAlIaUUpRoFU2lAWgWR0CVFDbKzRhMdX2UKGgGaAloD0MIaAQb1/+nckCUhpRSlGgVTfUBaBZHQJUUrcZccEN1fZQoaAZoCWgPQwi/SdOgaK5xQJSGlFKUaBVNSwFoFkdAlRaPDpC8e3V9lChoBmgJaA9DCOfIyi+D229AlIaUUpRoFU1eAWgWR0CVFwlAu7HydX2UKGgGaAloD0MI3bQZpyFtbECUhpRSlGgVTUwBaBZHQJUXZbhWHUN1fZQoaAZoCWgPQwhS1m8mJohtQJSGlFKUaBVNoAFoFkdAlRfgm3OObXV9lChoBmgJaA9DCJSjAFGw4m9AlIaUUpRoFU2GAWgWR0CVGMIppeu3dX2UKGgGaAloD0MIf2jmybXBbkCUhpRSlGgVTZkBaBZHQJUZKyAxzq91fZQoaAZoCWgPQwidEDroEr9aQJSGlFKUaBVN6ANoFkdAlS+Ia5wwTXV9lChoBmgJaA9DCN51NuQf9XBAlIaUUpRoFU1UAWgWR0CVMPswL3K0dX2UKGgGaAloD0MIcvikE8kXcECUhpRSlGgVTUkBaBZHQJUyRPLxI8R1fZQoaAZoCWgPQwiQTIdOT9xuQJSGlFKUaBVNowFoFkdAlTXwCCBf8nV9lChoBmgJaA9DCAk1Q6qooW5AlIaUUpRoFU1lAWgWR0CVN7vjOs1bdX2UKGgGaAloD0MI/U0oRMClPkCUhpRSlGgVTRgBaBZHQJU5yzByjpN1fZQoaAZoCWgPQwjfbd44qZFwQJSGlFKUaBVNUwFoFkdAlTr5e3QUpXV9lChoBmgJaA9DCGSSkbMwfHFAlIaUUpRoFU1bAWgWR0CVPD7m+0w8dX2UKGgGaAloD0MIy9WPTXIVb0CUhpRSlGgVTYkBaBZHQJU99yzXz191fZQoaAZoCWgPQwh8Zd6q6ypwQJSGlFKUaBVNawFoFkdAlT61mvnr6nV9lChoBmgJaA9DCJxTyQBQgGxAlIaUUpRoFU1aAWgWR0CVQ05HVf/ndX2UKGgGaAloD0MItafknNgzckCUhpRSlGgVTVgBaBZHQJVIPMUypJh1fZQoaAZoCWgPQwg7cM6I0l1bQJSGlFKUaBVN6ANoFkdAlU2UtZmqYXV9lChoBmgJaA9DCJ4mM95WPW1AlIaUUpRoFU31AmgWR0CVTaPV/c33dX2UKGgGaAloD0MIB5j5Dn60b0CUhpRSlGgVTYACaBZHQJVN2MZP2wp1fZQoaAZoCWgPQwgyIeaSKrBwQJSGlFKUaBVNTQFoFkdAlU4rRfF72XV9lChoBmgJaA9DCGk7pu7K4V1AlIaUUpRoFU3oA2gWR0CVTvnSv1UVdX2UKGgGaAloD0MIsaIG0zBgSECUhpRSlGgVTQUBaBZHQJVPBMTN+sp1fZQoaAZoCWgPQwh2btqM01RtQJSGlFKUaBVNRAFoFkdAlU+x91EE1XV9lChoBmgJaA9DCKLQsu7fqXBAlIaUUpRoFU0rAWgWR0CVUPAKOT7mdX2UKGgGaAloD0MIYabtX1mXcUCUhpRSlGgVTWgBaBZHQJVRvDKoybh1fZQoaAZoCWgPQwgKoYMuYStrQJSGlFKUaBVNoAFoFkdAlVKCIP9UCXV9lChoBmgJaA9DCCGSIcfWcmRAlIaUUpRoFU3oA2gWR0CVVpNB4UvgdX2UKGgGaAloD0MInigJibRdcECUhpRSlGgVTXgBaBZHQJVZY690zTF1fZQoaAZoCWgPQwgs8YCyKT5uQJSGlFKUaBVNxgFoFkdAlVnsWsRxtHV9lChoBmgJaA9DCJ4mM97WWGVAlIaUUpRoFU3oA2gWR0CVWkww0wajdX2UKGgGaAloD0MIesVTj3RXcECUhpRSlGgVTV0BaBZHQJVcEoNNJvp1fZQoaAZoCWgPQwhh4STN3wRxQJSGlFKUaBVNZgFoFkdAlV0YhllK9XV9lChoBmgJaA9DCKXd6GM+FEBAlIaUUpRoFUv4aBZHQJVdMrPMSsd1fZQoaAZoCWgPQwj9a3nl+odtQJSGlFKUaBVNegFoFkdAlV2FMIu5BnV9lChoBmgJaA9DCOMXXklyIG1AlIaUUpRoFU1fAWgWR0CVXZw4sEq2dX2UKGgGaAloD0MIkDAMWHJPcUCUhpRSlGgVTXoBaBZHQJVdsw1zhgp1fZQoaAZoCWgPQwiy1Hq/UfduQJSGlFKUaBVNYgFoFkdAlV5ak/KQrHV9lChoBmgJaA9DCB13SgdrWmxAlIaUUpRoFU1bAWgWR0CVX0Q0GeMAdX2UKGgGaAloD0MIT1d3LDazbkCUhpRSlGgVTQoDaBZHQJVfZxp+MIh1fZQoaAZoCWgPQwiEukihLI9vQJSGlFKUaBVNYAFoFkdAlWAMzZYgaHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ilana_lunar_PPO_model_1000000/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e64c83d363ca9bad435646bd9f8e02f39db3e6850f0602eb3ca3988310443555
3
+ size 87929
ilana_lunar_PPO_model_1000000/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44b3f2561cbdf9566417c2b936c94cc018f7cf79928d4a26442c64bbf2ff2dce
3
+ size 43393
ilana_lunar_PPO_model_1000000/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ilana_lunar_PPO_model_1000000/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (191 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 252.27798452880924, "std_reward": 20.8461797533115, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T00:37:20.174339"}