File size: 3,394 Bytes
744d366 f26ac1a 744d366 f26ac1a 6d56da9 bcad80e 6d56da9 744d366 6d56da9 744d366 6d56da9 744d366 f26ac1a 6d56da9 744d366 6d56da9 f26ac1a 6d56da9 744d366 6d56da9 744d366 6d56da9 bcad80e f26ac1a 28bcebb 6d56da9 744d366 6d56da9 744d366 6d56da9 744d366 6d56da9 744d366 6d56da9 744d366 6d56da9 744d366 f26ac1a 744d366 f26ac1a 744d366 28bcebb 744d366 73d385f 744d366 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import subprocess
import os
import subprocess
from PIL import Image, ImageDraw
import re
import json
import subprocess
def process_inference_results(results, process_image=False):
"""
Process the inference results by:
1. Adding bounding boxes on the image based on the coordinates in 'text'.
2. Extracting and returning the text prompt.
:param results: List of inference results with bounding boxes in 'text'.
:return: (image, text)
"""
processed_images = []
extracted_texts = []
for result in results:
image_path = result['image_path']
img = Image.open(image_path).convert("RGB")
draw = ImageDraw.Draw(img)
bbox_str = re.search(r'\[\[([0-9,\s]+)\]\]', result['text'])
if bbox_str:
bbox = [int(coord) for coord in bbox_str.group(1).split(',')]
x1, y1, x2, y2 = bbox
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
extracted_texts.append(result['text'])
processed_images.append(img)
if process_image:
return processed_images, extracted_texts
return extracted_texts
def inference_and_run(image_path, prompt, conv_mode="ferret_gemma_instruct", model_path="jadechoghari/Ferret-UI-Gemma2b", box=None, process_image=False):
"""
Run the inference and capture the errors for debugging.
"""
data_input = [{
"id": 0,
"image": os.path.basename(image_path),
"image_h": Image.open(image_path).height,
"image_w": Image.open(image_path).width,
"conversations": [{"from": "human", "value": f"<image>\n{prompt}"}]
}]
if box:
data_input[0]["box_x1y1x2y2"] = [[box]]
with open("eval.json", "w") as json_file:
json.dump(data_input, json_file)
print("eval.json file created successfully.")
cmd = [
"python", "-m", "model_UI",
"--model_path", model_path,
"--data_path", "eval.json",
"--image_path", ".",
"--answers_file", "eval_output.jsonl",
"--num_beam", "1",
"--max_new_tokens", "32",
"--conv_mode", conv_mode
]
if box:
cmd.extend(["--region_format", "box", "--add_region_feature"])
try:
result = subprocess.run(cmd, check=True, capture_output=True, text=True)
print(f"Subprocess output:\n{result.stdout}")
print(f"Subprocess error (if any):\n{result.stderr}")
print(f"Inference completed. Output written to eval_output.jsonl")
output_folder = 'eval_output.jsonl'
if os.path.exists(output_folder):
json_files = [f for f in os.listdir(output_folder) if f.endswith(".jsonl")]
if json_files:
output_file_path = os.path.join(output_folder, json_files[0])
with open(output_file_path, "r") as output_file:
results = [json.loads(line) for line in output_file]
return process_inference_results(results, process_image)
else:
print("No output JSONL files found.")
return None, None
else:
print("Output folder not found.")
return None, None
except subprocess.CalledProcessError as e:
print(f"Error occurred during inference:\n{e}")
print(f"Subprocess output:\n{e.output}")
return None, None
|