File size: 3,394 Bytes
744d366
 
 
f26ac1a
744d366
 
f26ac1a
6d56da9
bcad80e
6d56da9
744d366
 
 
 
 
 
6d56da9
744d366
 
6d56da9
744d366
 
 
f26ac1a
6d56da9
744d366
 
 
 
6d56da9
f26ac1a
6d56da9
744d366
6d56da9
744d366
6d56da9
bcad80e
 
 
 
f26ac1a
28bcebb
6d56da9
744d366
6d56da9
744d366
 
 
 
 
 
 
6d56da9
744d366
 
6d56da9
744d366
 
6d56da9
744d366
6d56da9
744d366
 
 
 
 
 
 
f26ac1a
744d366
 
 
 
 
 
f26ac1a
744d366
 
 
 
 
 
 
 
 
 
 
 
 
28bcebb
744d366
 
 
 
 
 
73d385f
744d366
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import subprocess
import os
import subprocess
from PIL import Image, ImageDraw
import re
import json
import subprocess

def process_inference_results(results, process_image=False):
    """
    Process the inference results by:
    1. Adding bounding boxes on the image based on the coordinates in 'text'.
    2. Extracting and returning the text prompt.
    
    :param results: List of inference results with bounding boxes in 'text'.
    :return: (image, text)
    """
    processed_images = []
    extracted_texts = []

    for result in results:
        image_path = result['image_path']
        img = Image.open(image_path).convert("RGB")
        draw = ImageDraw.Draw(img)

        bbox_str = re.search(r'\[\[([0-9,\s]+)\]\]', result['text'])
        if bbox_str:
            bbox = [int(coord) for coord in bbox_str.group(1).split(',')]
            x1, y1, x2, y2 = bbox

            draw.rectangle([x1, y1, x2, y2], outline="red", width=3)

        extracted_texts.append(result['text'])

        processed_images.append(img)

    if process_image:
        return processed_images, extracted_texts

    return extracted_texts

def inference_and_run(image_path, prompt, conv_mode="ferret_gemma_instruct", model_path="jadechoghari/Ferret-UI-Gemma2b", box=None, process_image=False):
    """
    Run the inference and capture the errors for debugging.
    """
    data_input = [{
        "id": 0,
        "image": os.path.basename(image_path),
        "image_h": Image.open(image_path).height,
        "image_w": Image.open(image_path).width,
        "conversations": [{"from": "human", "value": f"<image>\n{prompt}"}]
    }]
    
    if box:
        data_input[0]["box_x1y1x2y2"] = [[box]]

    with open("eval.json", "w") as json_file:
        json.dump(data_input, json_file)
    
    print("eval.json file created successfully.")
    
    cmd = [
        "python", "-m", "model_UI", 
        "--model_path", model_path,
        "--data_path", "eval.json", 
        "--image_path", ".", 
        "--answers_file", "eval_output.jsonl", 
        "--num_beam", "1", 
        "--max_new_tokens", "32",
        "--conv_mode", conv_mode
    ]

    if box:
        cmd.extend(["--region_format", "box", "--add_region_feature"])

    try:
        result = subprocess.run(cmd, check=True, capture_output=True, text=True)
        print(f"Subprocess output:\n{result.stdout}")
        print(f"Subprocess error (if any):\n{result.stderr}")
        print(f"Inference completed. Output written to eval_output.jsonl")

        output_folder = 'eval_output.jsonl'
        if os.path.exists(output_folder):
            json_files = [f for f in os.listdir(output_folder) if f.endswith(".jsonl")]
            if json_files:
                output_file_path = os.path.join(output_folder, json_files[0])
                with open(output_file_path, "r") as output_file:
                    results = [json.loads(line) for line in output_file]
                
                return process_inference_results(results, process_image)
            else:
                print("No output JSONL files found.")
                return None, None
        else:
            print("Output folder not found.")
            return None, None

    except subprocess.CalledProcessError as e:
        print(f"Error occurred during inference:\n{e}")
        print(f"Subprocess output:\n{e.output}")
        return None, None