File size: 50,703 Bytes
56f618d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2ff23
56f618d
fb2ff23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f618d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from abc import ABC, abstractmethod
import math


import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
import re

from .clip_encoder import CLIPVisionTower, CLIPVisionTowerS2
import os
## modified add build_vision_tower
def build_vision_tower(vision_tower_cfg, **kwargs):
    vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
    is_absolute_path_exists = os.path.exists(vision_tower)
    use_s2 = getattr(vision_tower_cfg, 's2', False)
    if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower:
        if use_s2:
            return CLIPVisionTowerS2(vision_tower, args=vision_tower_cfg, **kwargs)
        else:
            return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)

    raise ValueError(f'Unknown vision tower: {vision_tower}')

    
# from .multimodal_projector.builder import build_vision_projector
def build_vision_projector(config, delay_load=False, **kwargs):
    projector_type = getattr(config, 'mm_projector_type', 'linear')

    if projector_type == 'linear':
        return nn.Linear(config.mm_hidden_size, config.hidden_size)

    mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
    if mlp_gelu_match:
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        return nn.Sequential(*modules)

    if projector_type == 'identity':
        return IdentityMap()

    raise ValueError(f'Unknown projector type: {projector_type}')

from .constants import (IGNORE_INDEX, IMAGE_TOKEN_INDEX,
                                DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN,
                                DEFAULT_IM_END_TOKEN, DEFAULT_REGION_FEA_TOKEN)

from .mm_utils import get_anyres_image_grid_shape

import os

def rand_sample(x, max_len):
    if x.shape[0] <= max_len:
        return x
    else:
        rand_idx = torch.randperm(x.shape[0])[:max_len]
    return x[rand_idx, :]


def rand_sample_repeat(x, max_len):
    if x.shape[0] < max_len:
        indices = torch.randint(0, x.shape[0], (max_len-x.shape[0],))
        # pdb.set_trace()
        return torch.cat((x, x[indices]), dim=0)
    elif x.shape[0] == max_len:
        return x
    else:
        rand_idx = torch.randperm(x.shape[0])[:max_len]
        return x[rand_idx, :]
    

def point_sample(input, point_coords, return_dtype, **kwargs):
    """
    A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors.
    Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside
    [0, 1] x [0, 1] square.
    Args:
        input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid.
        point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains
        [0, 1] x [0, 1] normalized point coordinates.
    Returns:
        output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains
            features for points in `point_coords`. The features are obtained via bilinear
            interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`.
    """
    add_dim = False
    if point_coords.dim() == 3:
        add_dim = True
        point_coords = point_coords.unsqueeze(2)
    # output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs)
    output = F.grid_sample(input.float(), (2.0 * point_coords - 1.0).float(), **kwargs)
    output = output.to(return_dtype)
    if add_dim:
        output = output.squeeze(3)
    return output


def farthest_point_sample(xyz, npoint):
    """
    Input:
        xyz: pointcloud data, [B, N, 2]
        npoint: number of samples
    Return:
        centroids: sampled pointcloud index, [B, npoint]
    """
    device = xyz.device
    B, N, C = xyz.shape
    centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
    distance = torch.ones(B, N).to(device) * 1e10
    farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
    batch_indices = torch.arange(B, dtype=torch.long).to(device)
    for i in range(npoint):
        centroids[:, i] = farthest
        centroid = xyz[batch_indices, farthest, :].view(B, 1, 2)
        dist = torch.sum((xyz - centroid) ** 2, -1)
        distance = torch.min(distance, dist)
        farthest = torch.max(distance, -1)[1]
    return centroids


def index_points(points, idx):
    """
    Input:
        points: input points data, [B, N, C]
        idx: sample index data, [B, S]
    Return:
        new_points:, indexed points data, [B, S, C]
    """
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    view_shape[1:] = [1] * (len(view_shape) - 1)
    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points


def square_distance(src, dst):
    """
    Calculate Euclid distance between each two points.
    src^T * dst = xn * xm + yn * ym + zn * zm;
    sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
    sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
    dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
         = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
    Input:
        src: source points, [B, N, C]
        dst: target points, [B, M, C]
    Output:
        dist: per-point square distance, [B, N, M]
    """
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist


def knn_point(nsample, xyz, new_xyz):
    """
    Input:
        nsample: max sample number in local region
        xyz: all points, [B, N, C]
        new_xyz: query points, [B, S, C]
    Return:
        group_idx: grouped points index, [B, S, nsample]
    """
    sqrdists = square_distance(new_xyz, xyz)
    _, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)
    return group_idx


class ConvReLULN1D(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, bias=True):
        super(ConvReLULN1D, self).__init__()
        self.act = nn.ReLU(inplace=True)
        self.net = nn.Sequential(
            nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias),
            self.act
        )
        self.norm = nn.LayerNorm(out_channels)

    def forward(self, x):
        # (B, C, N) -> (B, C_1, N)
        x = self.net(x)
        x = x.permute(0, 2, 1)
        x = self.norm(x)
        x = x.permute(0, 2, 1)
        
        return x


def normal_init(module, mean=0, std=1, bias=0):
    if hasattr(module, 'weight') and module.weight is not None:
        nn.init.normal_(module.weight, mean, std)
    if hasattr(module, 'bias') and module.bias is not None:
        nn.init.constant_(module.bias, bias)


class GeoRegionSampler(nn.Module):
    def __init__(self, 
                 input_dim,
                 output_dim,
                 num_init_point,
                 num_sub_point,
                 num_neighbor,
                 pooler_mode='mean'):
        super(GeoRegionSampler, self).__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.num_init_point = num_init_point
        self.num_sub_point = num_sub_point
        self.num_neighbor = num_neighbor

        self.diff_projector_list = nn.ModuleList()
        self.agg_projector_list = nn.ModuleList()
        self.pooler_list = nn.ModuleList()

        for ii in range(len(num_sub_point)):
            self.diff_projector_list.append(nn.Linear(self.input_dim + 2, self.input_dim + 2))
            self.agg_projector_list.append(ConvReLULN1D(in_channels=2*(self.input_dim + 2),
                                                        out_channels=self.input_dim,
                                                        ))
            if pooler_mode == 'mean':
                self.pooler_list.append(nn.AvgPool1d(kernel_size=num_neighbor[ii]))
            elif pooler_mode =='max':
                self.pooler_list.append(nn.AdaptiveMaxPool1d(output_size=1))
            else:
                raise NotImplementedError(f'{self.pooler_mode} is not supported.')

        self.flatten_projector = nn.Linear(self.input_dim * num_sub_point[-1], self.input_dim)
        self.dim_projector = nn.Linear(self.input_dim, self.output_dim)
        # self.dim_projector = nn.Sequential(*[
        #     nn.Linear(self.input_dim, self.output_dim),
        #     nn.GELU(),
        #     nn.Linear(self.output_dim, self.output_dim)
        # ])

        self.norm_init_weights()

    #  self.dtype = torch.float32
    def norm_init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                normal_init(m, 0, 0.01)


    def forward(self, 
                feature_map, 
                region_masks, 
                original_dtype,
                return_dtype):

        assert len(feature_map) == len(region_masks)

        all_points = []
        all_points_fea = []
        all_points_img_ids = []

        # Sample points and their features
        for img_idx, (region_feature_map_i, region_masks_list_i) in enumerate(zip(feature_map, region_masks)):
            if len(region_masks_list_i) != 0:
                # (w, h)
                ori_image_wh = torch.tensor([region_masks_list_i[0].shape[0], region_masks_list_i[0].shape[1]], device=region_masks_list_i[0].device)[None,]
                # list of elements of shape [num_sample_point, 2] 
                cur_non_zero_pos = [rand_sample_repeat((m.nonzero()/ori_image_wh), self.num_init_point) for m in region_masks_list_i]
                # list -> [num_mask, num_sample_point, 2]
                cur_non_zero_pos = torch.stack(cur_non_zero_pos)
                # [HxW, C] -> [H, W, C] -> [C, H, W] -> [N, C, H, W]
                if region_feature_map_i.ndim == 2:
                    h = w = int(math.sqrt(region_feature_map_i.shape[0]))
                    c = region_feature_map_i.shape[-1]
                    region_feature_map_i = region_feature_map_i.reshape(h, w, c)
                else:
                    assert region_feature_map_i.ndim == 3
                dup_region_feature_map_i = region_feature_map_i.permute(2, 0, 1)
                dup_region_feature_map_i = dup_region_feature_map_i.unsqueeze(0).repeat(cur_non_zero_pos.shape[0], 1, 1, 1)
                # [num_mask, C, H, W] x [num_mask, num_sample_point, 2] -> [num_mask, C, num_sample_point] -> [num_mask, num_sample_point, C]
                # F.grid_sample doesn't support BF16. Need to tranform into float32 then transform back.
                dup_region_feature_map_i_ori_type = dup_region_feature_map_i.to(original_dtype)
                region_feature_i = point_sample(dup_region_feature_map_i_ori_type, 
                                                cur_non_zero_pos.flip(dims=(2,)).type(original_dtype), 
                                                return_dtype,
                                                align_corners=True,
                                                )
                # region_feature_i = region_feature_i.to(dup_region_feature_map_i.dtype)
                region_feature_i = region_feature_i.transpose(-2, -1)

                cur_img_ids = [img_idx] * len(cur_non_zero_pos)
                # save to global list
                all_points.append(cur_non_zero_pos)
                all_points_fea.append(region_feature_i)
                all_points_img_ids.extend(cur_img_ids)

        # No region found, return list of None.
        if len(all_points) == 0:
            return [None] * len(region_masks)
        
        all_points = torch.cat(all_points, dim=0).to(return_dtype)  # [B*num_mask, num_sample_point, 2]
        all_points_fea = torch.cat(all_points_fea, dim=0)  # [B*num_mask, num_sample_point, C]
        all_points_img_ids = torch.tensor(all_points_img_ids, device=all_points_fea.device)

        assert all_points_fea.shape[:-1] == all_points_fea.shape[:-1]
        
        # Processing.
        for stage_i in range(len(self.num_sub_point)):
            cur_num_sub_point = self.num_sub_point[stage_i]
            cur_num_neighbor = self.num_neighbor[stage_i]

            all_points = all_points.contiguous()  # xy [btach, points, xy]
            fps_idx = farthest_point_sample(all_points, cur_num_sub_point).long()

            new_points = index_points(all_points, fps_idx)  # [B, npoint, 2]
            new_points_fea = index_points(all_points_fea, fps_idx)  # [B, npoint, d]

            idx = knn_point(cur_num_neighbor, all_points, new_points)
            grouped_points = index_points(all_points, idx)  # [B, npoint, k, 2]
            grouped_points_fea = index_points(all_points_fea, idx)  # [B, npoint, k, d]

            local_points_fea = torch.cat([grouped_points_fea, grouped_points],dim=-1)  # [B, npoint, k, d+2]
            anchor_points_fea = torch.cat([new_points_fea, new_points],dim=-1).unsqueeze(-2)
            diff_points_fea = local_points_fea-anchor_points_fea

            diff_points_fea = self.diff_projector_list[stage_i](diff_points_fea)
            gather_points_fea = torch.cat([diff_points_fea, anchor_points_fea.repeat(1, 1, cur_num_neighbor, 1)], dim=-1)  # [B, npoint, k, 2(d+2)]

            b, n, s, d = gather_points_fea.size() 
            gather_points_fea = gather_points_fea.permute(0, 1, 3, 2)   # [B, npoint, 2(d+2), k]
            gather_points_fea = gather_points_fea.reshape(-1, d, s)   # [B*npoint, 2(d+2), k]
            gather_points_fea = self.agg_projector_list[stage_i](gather_points_fea) # [B*npoint, d, k]

            batch_size, new_dim, _ = gather_points_fea.size()
            gather_points_fea = self.pooler_list[stage_i](gather_points_fea).view(batch_size, new_dim) # [B*npoint, d]

            gather_points_fea = gather_points_fea.reshape(b, n, -1)     # [B, npoint, d]

            all_points = new_points
            all_points_fea = gather_points_fea

        x = all_points_fea.flatten(1, -1)  # [B, npoint x d]
        x = self.flatten_projector(x)
        all_region_fea = self.dim_projector(x)  # [B, d]

        output_region_fea = []
        for img_idx in range(len(region_masks)):
            cur_mask = all_points_img_ids == img_idx

            if not cur_mask.any():
                output_region_fea.append(None)
            else:
                output_region_fea.append(all_region_fea[cur_mask])

        return output_region_fea


class FerretMetaModel:

    def __init__(self, config):
        super(FerretMetaModel, self).__init__(config)
        self.max_sample_point = 512
        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(config, delay_load=True)
            self.mm_projector = build_vision_projector(config)

            if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
                self.image_newline = nn.Parameter(
                    torch.empty(config.hidden_size, dtype=self.dtype)
                )
        
        if hasattr(config, "region_fea_adapter"):
            self.region_fea_adapter = nn.Linear(config.mm_hidden_size, config.hidden_size)

        if hasattr(config, "region_geo_sampler"):
            if getattr(config, 'mm_patch_merge_type', 'flat').startswith('spatial'):
                self.region_geo_sampler = GeoRegionSampler(input_dim=config.mm_hidden_size,
                                                        output_dim=config.hidden_size,
                                                        num_init_point=self.max_sample_point,
                                                        num_sub_point=[128, 32],
                                                        num_neighbor=[24, 24],
                                                        pooler_mode=config.sampler_pooler_mode
                                                        )
            else:
                self.region_geo_sampler = GeoRegionSampler(input_dim=config.mm_hidden_size,
                                                        output_dim=config.hidden_size,
                                                        num_init_point=self.max_sample_point,
                                                        num_sub_point=[128, 32],
                                                        num_neighbor=[24, 24],
                                                        pooler_mode=config.sampler_pooler_mode
                                                        )

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def initialize_vision_modules(self, model_args, fsdp=None,
                                  add_region_feature=False, 
                                  region_geo_sampler=False, 
                                  sampler_pooler_mode='mean',
                                  ):
        vision_tower = model_args.vision_tower
        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
        mm_patch_merge_type = model_args.mm_patch_merge_type

        self.config.mm_vision_tower = vision_tower

        if self.get_vision_tower() is None:
            vision_tower = build_vision_tower(model_args)

            if fsdp is not None and len(fsdp) > 0:
                self.vision_tower = [vision_tower]
            else:
                self.vision_tower = vision_tower
        else:
            if fsdp is not None and len(fsdp) > 0:
                vision_tower = self.vision_tower[0]
            else:
                vision_tower = self.vision_tower
            vision_tower.load_model()

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
        self.config.mm_hidden_size = vision_tower.hidden_size
        self.config.mm_vision_select_layer = mm_vision_select_layer
        self.config.mm_vision_select_feature = mm_vision_select_feature
        self.config.mm_patch_merge_type = mm_patch_merge_type

        if getattr(self, 'mm_projector', None) is None:
            self.mm_projector = build_vision_projector(self.config)

            if 'unpad' in mm_patch_merge_type:
                embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
                self.image_newline = nn.Parameter(
                    torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
                )

        if add_region_feature:
            if region_geo_sampler:
                self.config.region_geo_sampler = True
                self.config.sampler_pooler_mode = sampler_pooler_mode
                
                if not hasattr(self, 'region_geo_sampler'):
                    if mm_patch_merge_type.startswith('spatial'):
                        # === if feature is concated ===
                        # self.region_geo_sampler = GeoRegionSampler(input_dim=self.config.mm_hidden_size * 2,
                        #                                         output_dim=self.config.hidden_size,
                        #                                         num_init_point=self.max_sample_point,
                        #                                         num_sub_point=[128, 32],
                        #                                         num_neighbor=[24, 24],
                        #                                         pooler_mode=sampler_pooler_mode
                        #                                         )
                        # === if feature is added ===
                        self.region_geo_sampler = GeoRegionSampler(input_dim=self.config.mm_hidden_size,
                                                                output_dim=self.config.hidden_size,
                                                                num_init_point=self.max_sample_point,
                                                                num_sub_point=[128, 32],
                                                                num_neighbor=[24, 24],
                                                                pooler_mode=sampler_pooler_mode
                                                                )
                    else:
                        self.region_geo_sampler = GeoRegionSampler(input_dim=self.config.mm_hidden_size,
                                                                output_dim=self.config.hidden_size,
                                                                num_init_point=self.max_sample_point,
                                                                num_sub_point=[128, 32],
                                                                num_neighbor=[24, 24],
                                                                pooler_mode=sampler_pooler_mode
                                                                )
            else:
                self.config.region_fea_adapter = True
                if not hasattr(self, 'region_fea_adapter'):
                    self.region_fea_adapter = nn.Linear(self.config.mm_hidden_size, self.config.hidden_size)

        else:
            # In case it is frozen by LoRA
            for p in self.mm_projector.parameters():
                p.requires_grad = True

        # print(f"pretrain mm mlp adapter: {type(pretrain_mm_mlp_adapter)}") # String
        if pretrain_mm_mlp_adapter is not None and pretrain_mm_mlp_adapter != "None":
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}

            self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))


def unpad_image(tensor, original_size):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
    tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
    original_size (tuple): The original size of PIL image (width, height).

    Returns:
    torch.Tensor: The unpadded image tensor.
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if original_aspect_ratio > current_aspect_ratio:
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding:current_height - padding, :]
    else:
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding:current_width - padding]

    return unpadded_tensor


class FerretMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_images(self, images, region_flag=False, region_geo_sampler=False):
        image_features = self.get_model().get_vision_tower()(images)
        projected_image_features = self.get_model().mm_projector(image_features)
        if region_flag:
            if region_geo_sampler:
                new_region_feature_map = image_features
            else:
                new_region_feature_map = self.get_model().region_fea_adapter(image_features)
        else:
            new_region_feature_map = None

        return image_features, projected_image_features, new_region_feature_map

    def extract_region_feature(self, region_feature_map, region_masks, original_dtype, return_dtype):
        all_region_features = []
        assert len(region_feature_map) == len(region_masks)
        for region_feature_map_i, region_masks_list_i in zip(region_feature_map, region_masks):
            if len(region_masks_list_i) == 0:
                all_region_features.append(None)
            else:
                # (w, h)
                ori_image_wh = torch.tensor([region_masks_list_i[0].shape[0], region_masks_list_i[0].shape[1]], device=region_masks_list_i[0].device)[None,]
                # list of elements of shape [num_sample_point, 2]
                non_zero_pos = [rand_sample((m.nonzero()/ori_image_wh), self.get_model().max_sample_point) for m in region_masks_list_i]
                # [num_mask, num_sample_point(padded), 2]
                non_zero_pos = nn.utils.rnn.pad_sequence(non_zero_pos, padding_value=-1, batch_first=True)
                non_zero_pos_mask = ~(non_zero_pos.sum(dim=-1) < 0)
                # [HxW, C] -> [H, W, C] -> [C, H, W] -> [N, C, H, W]
                h = w = int(math.sqrt(region_feature_map_i.shape[0]))
                c = region_feature_map_i.shape[-1]
                dup_region_feature_map_i = region_feature_map_i.reshape(h, w, c).permute(2, 0, 1)
                dup_region_feature_map_i = dup_region_feature_map_i.unsqueeze(0).repeat(non_zero_pos.shape[0], 1, 1, 1)
                # [num_mask, C, H, W] x [num_mask, num_sample_point(padded), 2] -> [num_mask, C, num_sample_point(padded)]
                # F.grid_sample doesn't support BF16. Need to tranform into float32 then transform back.
                dup_region_feature_map_i_ori_type = dup_region_feature_map_i.to(original_dtype)
                # pdb.set_trace()
                region_feature_i = point_sample(dup_region_feature_map_i_ori_type, 
                                                non_zero_pos.flip(dims=(2,)).type(original_dtype), 
                                                return_dtype, 
                                                align_corners=True
                                                )
                region_feature_i = region_feature_i.to(dup_region_feature_map_i.dtype)
                # [num_mask, C]
                region_feature_i = torch.stack([x[m].mean(dim=0) for x, m in zip(region_feature_i.transpose(1,2), non_zero_pos_mask)]).nan_to_num()
                all_region_features.append(region_feature_i)
        
        return all_region_features

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels,
        images, image_sizes=None, region_masks=None
    ):
        if region_masks is not None:
            region_flag = True
        else:
            region_flag = False
        region_geo_sampler = region_flag and getattr(self.config, 'region_geo_sampler', False)

        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels

        if type(images) is list or images.ndim == 5:
            if type(images) is list:
                images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
            
            concat_images = torch.cat([image for image in images], dim=0)
            raw_image_features, image_features, region_feature_map = self.encode_images(concat_images, region_flag=region_flag, region_geo_sampler=region_geo_sampler)
            split_sizes = [image.shape[0] for image in images]
            image_features = torch.split(image_features, split_sizes, dim=0)

            if region_flag:
                region_feature_maps = torch.split(region_feature_map, split_sizes, dim=0)  #  (#images, #patches, h*w, c)
                # ======== This is for only taking the global image feature map for referring ======
                # region_feature_map = torch.split(region_feature_map, split_sizes, dim=0)
                # first_region_feature_map = [x[0:1] for x in region_feature_map]
                # region_feature_map = torch.cat(first_region_feature_map, dim=0)

            mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
            image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square_nocrop')

            if mm_patch_merge_type == 'flat':
                image_features = [x.flatten(0, 1) for x in image_features]
                # TODO: here we use the first feature map default for each batch (global feaure map) for referring
                first_region_feature_map = [x[0:1] for x in region_feature_map]
                region_feature_map = torch.cat(first_region_feature_map, dim=0) #  (#images, h, w, c)
            elif mm_patch_merge_type.startswith('spatial'):
                new_image_features = []
                new_region_features = []
                for image_idx, image_feature in enumerate(image_features):
                    if image_feature.shape[0] > 1:
                        base_image_feature = image_feature[0]
                        image_feature = image_feature[1:]
                        height = width = self.get_vision_tower().num_patches_per_side
                        assert height * width == base_image_feature.shape[0]
                        if region_flag:
                            cur_region_feature_map = region_feature_maps[image_idx]  # (#patches, h*w, c)
                            cur_region_feature_map = cur_region_feature_map.view(cur_region_feature_map.shape[0], height, width, cur_region_feature_map.shape[-1])  # (#patches, h, w, c)
                            base_region_feature = cur_region_feature_map[0]
                            region_feature = cur_region_feature_map[1:]
                            # pdb.set_trace()
                        if image_aspect_ratio == 'anyres':
                            num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
                            image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
                            if region_flag:
                                region_feature = region_feature.view(num_patch_height, num_patch_width, height, width, -1)
                        else:
                            raise NotImplementedError

                        if 'unpad' in mm_patch_merge_type:
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = unpad_image(image_feature, image_sizes[image_idx])
                            image_feature = torch.cat((
                                image_feature,
                                self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
                            ), dim=-1)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        else:
                            image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
                            image_feature = image_feature.flatten(0, 3)
                        image_feature = torch.cat((base_image_feature, image_feature), dim=0)
                        if region_flag:
                            region_feature = region_feature.permute(0, 2, 1, 3, 4).contiguous()   # (patch_h, patch_w, h, w, c) -> (patch_h, h, patch_w, w, c)
                            region_feature = region_feature.flatten(0, 1).flatten(1, 2)   # (patch_h, h, patch_w, w, c) -> (all_h, all_w, c)
                            # Tranform dtype, if using pytorch2.1+, no need to do this.
                            base_region_feature = base_region_feature.to(dtype=torch.float32)
                            base_region_feature_resized = F.interpolate(base_region_feature.unsqueeze(0).permute(0, 3, 1, 2), (region_feature.shape[0], region_feature.shape[1]))  # (1, c, all_h, all_w)
                            base_region_feature_resized = base_region_feature_resized.to(region_feature.dtype)
                            base_region_feature_resized = base_region_feature_resized.squeeze(0).permute(1, 2, 0)   # (all_h, all_w, c)
                            # === Add: 
                            new_region_feature = base_region_feature_resized + region_feature
                            # === Concat: A bit lower, 1/3 more GPU memory consumption.
                            # new_region_feature = torch.cat((base_region_feature_resized, region_feature), dim=2)  # (all_h, all_w, 2c)
                    else:
                        image_feature = image_feature[0]
                        if 'unpad' in mm_patch_merge_type:
                            image_feature = torch.cat((
                                image_feature,
                                self.model.image_newline[None].to(image_feature.device)
                            ), dim=0)
                        if region_flag:
                            new_region_feature = region_feature_maps[image_idx][0]   # (h, w, c)
                    new_image_features.append(image_feature)
                    if region_flag:
                        new_region_features.append(new_region_feature)
                        # pdb.set_trace()
                image_features = new_image_features
                if region_flag:
                    # region_feature_map = torch.stack(new_region_features, dim=0)  # (#images, h, w, c or 2c)
                    region_feature_map = new_region_features
                    # pdb.set_trace()
            else:
                raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
        else:
            raw_image_features, image_features, region_feature_map = self.encode_images(images, region_flag=region_flag, region_geo_sampler=region_geo_sampler)
        
        if region_flag:
            assert len(region_masks) == len(input_ids)
            for img_idx, (cur_input_id, cur_region_mask) in enumerate(zip(input_ids, region_masks)):
                cur_region_token_num = (cur_input_id == self.config.im_region_fea_token).sum()
                if cur_region_token_num != len(cur_region_mask):
                    print('Found regions cropped because of text beyond max_len, removed them.')
                    region_masks[img_idx] = cur_region_mask[:cur_region_token_num]

            # dump_region_mask = torch.zeros(100, 100).to(device='cuda')
            dump_region_mask = torch.zeros(100, 100, device='cuda')
            dump_region_mask[10:20, 10:20] = 1
            dump_region_masks = [[dump_region_mask.clone()]]
            for _ in range(len(region_feature_map)-1):
                dump_region_masks.append([])

            if region_geo_sampler:
                if type(image_features) is list:
                    region_features = self.get_model().region_geo_sampler(region_feature_map, region_masks, 
                                                                        original_dtype=raw_image_features.dtype,
                                                                        return_dtype=image_features[0].dtype)
                    dump_region_features = self.get_model().region_geo_sampler(region_feature_map, dump_region_masks, 
                                                                        original_dtype=raw_image_features.dtype,
                                                                        return_dtype=image_features[0].dtype)
                else:
                    region_features = self.get_model().region_geo_sampler(region_feature_map, region_masks, 
                                                                        original_dtype=raw_image_features.dtype,
                                                                        return_dtype=image_features.dtype)
                    dump_region_features = self.get_model().region_geo_sampler(region_feature_map, dump_region_masks, 
                                                                        original_dtype=raw_image_features.dtype,
                                                                        return_dtype=image_features.dtype)
            else:
                if type(image_features) is list:
                    region_features = self.extract_region_feature(region_feature_map, region_masks, 
                                                                original_dtype=raw_image_features.dtype,
                                                                return_dtype=image_features[0].dtype)
                    dump_region_features = self.extract_region_feature(region_feature_map, dump_region_masks, 
                                                                original_dtype=raw_image_features.dtype,
                                                                return_dtype=image_features[0].dtype)
                else:
                    region_features = self.extract_region_feature(region_feature_map, region_masks, 
                                                              original_dtype=raw_image_features.dtype,
                                                              return_dtype=image_features.dtype)
                    dump_region_features = self.extract_region_feature(region_feature_map, dump_region_masks, 
                                                                original_dtype=raw_image_features.dtype,
                                                                return_dtype=image_features.dtype)
            # assert len(dump_region_features) == 1
            assert len([df for df in dump_region_features if df is not None]) == 1
            assert len(dump_region_features[0]) == 1
            assert len(region_features) == len(input_ids)
        
        # TODO: image start / end is not implemented here to support pretraining.
        if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
            raise NotImplementedError

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- FIXME
        _input_ids = input_ids
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            if num_images == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue

            image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            cur_input_id_with_im = []
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
            cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []
            assert len(cur_input_ids_noim) == len(cur_input_embeds_no_im)
            for i in range(num_images + 1):
                cur_input_id_with_im.append(cur_input_ids_noim[i])
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_images:
                    cur_image_features = image_features[cur_image_idx]
                    cur_image_idx += 1
                    cur_input_id_with_im.append(torch.full((cur_image_features.shape[0],), IMAGE_TOKEN_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))

            cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]

            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)
            cur_input_id_with_im = torch.cat(cur_input_id_with_im)

            assert len(cur_input_id_with_im) == len(cur_new_input_embeds)
            # Add region feature into text feature embeddings.
            # Currently only support one image in each input.
            assert batch_idx+1 == cur_image_idx
            if region_flag and region_features[batch_idx] is not None:
                region_embs = torch.zeros_like(cur_new_input_embeds)
                region_replace_mask = (cur_input_id_with_im == self.config.im_region_fea_token)
                # region_embs[region_replace_mask] = region_features[batch_idx].to(cur_new_input_embeds.dtype)
                if len(region_embs[region_replace_mask]) != len(region_features[batch_idx]):
                    # ("Found a region cropped in text")
                    region_embs[region_replace_mask] = region_features[batch_idx][:len(region_embs[region_replace_mask])].to(cur_new_input_embeds.dtype)
                else:
                    region_embs[region_replace_mask] = region_features[batch_idx].to(cur_new_input_embeds.dtype)
                cur_new_input_embeds = cur_new_input_embeds * (~region_replace_mask).to(cur_new_input_embeds.dtype)[:, None] + region_embs 
            else:
                if hasattr(self.config, 'im_region_fea_token'):
                    assert (cur_input_id_with_im == self.config.im_region_fea_token).sum() == 0
            
            # Add dump region feature to input embedding, to make sure the gradient for region sampler always exist when open region_flag.
            if region_flag:
                # cur_new_input_embeds[0] = cur_new_input_embeds[0] + 0 * dump_region_features[0, 0].to(cur_new_input_embeds.dtype)
                cur_new_input_embeds[0] = cur_new_input_embeds[0] + 0.0 * dump_region_features[0][0].to(cur_new_input_embeds.dtype)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
        if tokenizer_model_max_length is not None:
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
                new_input_embeds_padded.append(torch.cat((
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
                    cur_new_embed
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
            else:
                new_input_embeds_padded.append(torch.cat((
                    cur_new_embed,
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels

    def initialize_vision_tokenizer(self, model_args, tokenizer, add_region_feature=False):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))
        
        if add_region_feature:
            region_token_id = tokenizer.convert_tokens_to_ids([DEFAULT_REGION_FEA_TOKEN])[0]
            # If region_token doesn't exist, add it.
            if region_token_id == tokenizer.unk_token_id:
                num_region_fea_tokens = tokenizer.add_tokens([DEFAULT_REGION_FEA_TOKEN], special_tokens=True)
                self.config.im_region_fea_token = tokenizer.convert_tokens_to_ids([DEFAULT_REGION_FEA_TOKEN])[0]
                self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if add_region_feature:
                num_new_tokens = num_new_tokens + num_region_fea_tokens

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
                embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False