File size: 10,510 Bytes
7f5b506
 
 
 
 
 
 
 
 
cea226e
7f5b506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from PIL import Image
from io import BytesIO
import base64
import torch
import math
import ast
from typing import Optional, Callable

from transformers import StoppingCriteria
from .constants import IMAGE_TOKEN_INDEX


def select_best_resolution(original_size, possible_resolutions):
    """
    Selects the best resolution from a list of possible resolutions based on the original size.

    Args:
        original_size (tuple): The original size of the image in the format (width, height).
        possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].

    Returns:
        tuple: The best fit resolution in the format (width, height).
    """
    original_width, original_height = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float('inf')

    for width, height in possible_resolutions:
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
        effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (width, height)

    return best_fit


def resize_and_pad_image(image, target_resolution, is_pad=False):
    """
    Resize and pad an image to a target resolution while maintaining aspect ratio.
    Args:
        image (PIL.Image.Image): The input image.
        target_resolution (tuple): The target resolution (width, height) of the image.
    Returns:
        PIL.Image.Image: The resized and padded image.
    """
    original_width, original_height = image.size
    target_width, target_height = target_resolution

    if is_pad:
        scale_w = target_width / original_width
        scale_h = target_height / original_height

        if scale_w < scale_h:
            new_width = target_width
            new_height = min(math.ceil(original_height * scale_w), target_height)
        else:
            new_height = target_height
            new_width = min(math.ceil(original_width * scale_h), target_width)

        # Resize the image
        resized_image = image.resize((new_width, new_height))

        new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
        paste_x = (target_width - new_width) // 2
        paste_y = (target_height - new_height) // 2
        new_image.paste(resized_image, (paste_x, paste_y))
    else:
        new_image = image.resize((target_width, target_height))

    return new_image


def divide_to_patches(image, patch_size):
    """
    Divides an image into patches of a specified size.

    Args:
        image (PIL.Image.Image): The input image.
        patch_size (int): The size of each patch.

    Returns:
        list: A list of PIL.Image.Image objects representing the patches.
    """
    patches = []
    width, height = image.size
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            box = (j, i, j + patch_size, i + patch_size)
            patch = image.crop(box)
            patches.append(patch)

    return patches


def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (tuple): The size of the input image in the format (width, height).
        grid_pinpoints (str): A string representation of a list of possible resolutions.
        patch_size (int): The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    width, height = select_best_resolution(image_size, possible_resolutions)
    return width // patch_size, height // patch_size


def process_anyres_image(image, processor, grid_pinpoints, image_process_func: Optional[Callable] = None):
    """
    Process an image with variable resolutions.

    Args:
        image (PIL.Image.Image): The input image to be processed.
        processor: The image processor object.
        grid_pinpoints (str): A string representation of a list of possible resolutions.

    Returns:
        torch.Tensor: A tensor containing the processed image patches.
    """
    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    
    best_resolution = select_best_resolution(image.size, possible_resolutions)

    # FIXME: not sure if do_pad or undo_pad may affect the referring side 
    image_padded = resize_and_pad_image(image, best_resolution, is_pad=False)

    patches = divide_to_patches(image_padded, processor.crop_size['height'])

    if image_process_func:
        resized_image_h, resized_image_w = image_process_func.keywords['size']
        image_original_resize = image.resize((resized_image_w, resized_image_h))
        image_patches = [image_original_resize] + patches
        image_patches = [image_process_func(image_patch)['pixel_values'][0]
                        for image_patch in image_patches]
    else:
        image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
        image_patches = [image_original_resize] + patches
        image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
                        for image_patch in image_patches]

    return torch.stack(image_patches, dim=0)


def load_image_from_base64(image):
    return Image.open(BytesIO(base64.b64decode(image)))


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


def process_images(images, image_processor, model_cfg, image_process_func: Optional[Callable] = None):
    image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
    new_images = []
    if image_aspect_ratio == 'pad':
        for image in images:
            image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
            image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
            new_images.append(image)
    elif image_aspect_ratio == "anyres":
        # image_processor(images, return_tensors='pt', do_resize=True, do_center_crop=False, size=[image_h, image_w])['pixel_values']
        for image in images:
            image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints, image_process_func=image_process_func)
            new_images.append(image)
    else:
        return image_processor(images, return_tensors='pt')['pixel_values']
    if all(x.shape == new_images[0].shape for x in new_images):
        new_images = torch.stack(new_images, dim=0)
    return new_images


def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == 'pt':
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f'Unsupported tensor type: {return_tensors}')
    return input_ids


def get_model_name_from_path(model_path):
    model_path = model_path.strip("/")
    model_paths = model_path.split("/")
    if model_paths[-1].startswith('checkpoint-'):
        return model_paths[-2] + "_" + model_paths[-1]
    else:
        return model_paths[-1]

class KeywordsStoppingCriteria(StoppingCriteria):
    def __init__(self, keywords, tokenizer, input_ids):
        self.keywords = keywords
        self.keyword_ids = []
        self.max_keyword_len = 0
        for keyword in keywords:
            cur_keyword_ids = tokenizer(keyword).input_ids
            if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
                cur_keyword_ids = cur_keyword_ids[1:]
            if len(cur_keyword_ids) > self.max_keyword_len:
                self.max_keyword_len = len(cur_keyword_ids)
            self.keyword_ids.append(torch.tensor(cur_keyword_ids))
        self.tokenizer = tokenizer
        self.start_len = input_ids.shape[1]
    
    def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
        self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
        for keyword_id in self.keyword_ids:
            truncated_output_ids = output_ids[0, -keyword_id.shape[0]:]
            if torch.equal(truncated_output_ids, keyword_id):
                return True
        outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
        for keyword in self.keywords:
            if keyword in outputs:
                return True
        return False
    
    def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        outputs = []
        for i in range(output_ids.shape[0]):
            outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
        return all(outputs)