--- library_name: transformers --- --- ## How to Use the *ferret-gemma* Model Please download and save `builder.py`, `conversation.py` locally. ```python import torch from PIL import Image from conversation import conv_templates from builder import load_pretrained_model # Assuming this is your custom model loader from functools import partial import numpy as np # define the task categories box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0'] box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction'] no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4'] # function to generate the mask def generate_mask_for_feature(coor, raw_w, raw_h, mask=None): """ Generates a region mask based on provided coordinates. Handles both point and box input. """ if mask is not None: assert mask.shape[0] == raw_w and mask.shape[1] == raw_h coor_mask = np.zeros((raw_w, raw_h)) # if it's a point (2 coordinates) if len(coor) == 2: span = 5 # Define the span for the point x_min = max(0, coor[0] - span) x_max = min(raw_w, coor[0] + span + 1) y_min = max(0, coor[1] - span) y_max = min(raw_h, coor[1] + span + 1) coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1 assert (coor_mask == 1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}" # if it's a box (4 coordinates) elif len(coor) == 4: coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1 if mask is not None: coor_mask = coor_mask * mask # Convert to torch tensor and ensure it contains non-zero values coor_mask = torch.from_numpy(coor_mask) assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :(" return coor_mask ``` ### Now, define the infer function ```python def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_gemma", conv_mode="ferret_gemma_instruct"): img = Image.open(image_path).convert('RGB') # this loads the model, image processor and tokenizer tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name) # define the image size (e.g., 224x224 or 336x336) image_size = {"height": 336, "width": 336} # process the image image_tensor = image_processor.preprocess( img, return_tensors='pt', do_resize=True, do_center_crop=False, size=(image_size['height'], image_size['width']) )['pixel_values'][0].unsqueeze(0) image_tensor = image_tensor.half().cuda() # generate the prompt per template requirement conv = conv_templates[conv_mode].copy() conv.append_message(conv.roles[0], prompt) conv.append_message(conv.roles[1], None) prompt_input = conv.get_prompt() # tokenize prompt input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda() # region mask logic (if region is provided) region_masks = None if region is not None: raw_w, raw_h = img.size region_masks = generate_mask_for_feature(region, raw_w, raw_h).unsqueeze(0).cuda().half() region_masks = [[region_masks]] # Wrap the mask in lists as expected by the model # generate model output with torch.inference_mode(): # Use region_masks in model's forward call model.orig_forward = model.forward model.forward = partial( model.orig_forward, region_masks=region_masks ) output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=1024, num_beams=1, region_masks=region_masks, # pass the region mask to the model image_sizes=[img.size] ) model.forward = model.orig_forward # we decode the output output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] return output_text.strip() ``` # We also define a task-specific inference function ```python def infer_ui_task(image_path, prompt, model_path, task, region=None): """ Handles task types: box_in_tasks, box_out_tasks, no_box_tasks. """ if task in box_in_tasks and region is None: raise ValueError(f"Task {task} requires a bounding box region.") if task in box_in_tasks: print(f"Processing {task} with bounding box region.") return infer_single_prompt(image_path, prompt, model_path, region) elif task in box_out_tasks: print(f"Processing {task} without bounding box region.") return infer_single_prompt(image_path, prompt, model_path) elif task in no_box_tasks: print(f"Processing {task} without image or bounding box.") return infer_single_prompt(image_path, prompt, model_path) else: raise ValueError(f"Unknown task type: {task}") ``` ### Usage: ```python # Example image and model paths image_path = 'image.jpg' model_path = 'jadechoghari/ferret-gemma' # Task requiring bounding box task = 'widgetcaptions' region = (50, 50, 200, 200) result = infer_ui_task(image_path, "Describe the contents of the box.", model_path, task, region=region) print("Result:", result) # Task not requiring bounding box task = 'conversation_interaction' result = infer_ui_task(image_path, "How do I navigate to the Games tab?", model_path, task) print("Result:", result) # Task with no image processing task = 'detailed_description' result = infer_ui_task(image_path, "Please describe the screen in detail.", model_path, task) print("Result:", result) ```