File size: 22,075 Bytes
15fca6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers import (
AutoConfig,
AutoModelForCausalLM,
LlamaConfig,
LlamaForCausalLM,
LlamaModel,
)
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation.utils import GenerateOutput
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.utils import logging
from cambrian_arch import CambrianMetaForCausalLM, CambrianMetaModel
IS_XLA_AVAILABLE = False
logger = logging.get_logger(__name__)
class CambrianConfig(LlamaConfig):
model_type = "cambrian_llama"
debug = "debug"
class CambrianLlamaModel(CambrianMetaModel, LlamaModel):
config_class = CambrianConfig
def __init__(self, config: LlamaConfig):
super(CambrianLlamaModel, self).__init__(config)
def forward(
self,
# pyre-fixme[9]: input_ids has type `LongTensor`; used as `None`.
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
vision_tower_aux_feature_list: Optional[List[torch.FloatTensor]] = None,
vision_tower_aux_attention_masks_list: Optional[List[torch.Tensor]] = None,
final_vision_feature_size: Optional[List[tuple]] = None,
global_context_feature: Optional[torch.Tensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `config`.
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute
# `gradient_checkpointing`.
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `training`.
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
# pyre-fixme[9]: past_key_values has type
# `Optional[List[FloatTensor]]`; used as `DynamicCache`.
# pyre-fixme[6]: For 1st argument expected
# `Optional[Tuple[Tuple[FloatTensor]]]` but got
# `Optional[List[FloatTensor]]`.
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
# pyre-fixme[16]: `Optional` has no attribute `get_usable_length`.
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
# pyre-fixme[16]: `Optional` has no attribute `device`.
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `embed_tokens`.
inputs_embeds = self.embed_tokens(input_ids)
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute
# `_use_flash_attention_2`.
self._use_flash_attention_2 = getattr(self, "_use_flash_attention_2", False)
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `_use_sdpa`.
self._use_sdpa = getattr(self, "_use_sdpa", True)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = (
attention_mask
if (attention_mask is not None and 0 in attention_mask)
else None
)
elif self._use_sdpa and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `layers`.
for i, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute
# `_gradient_checkpointing_func`.
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute `norm`.
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache()
# pyre-fixme[61]: `use_legacy_cache` is undefined, or not always
# defined.
if use_legacy_cache
else next_decoder_cache
)
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class CambrianLlamaForCausalLM(LlamaForCausalLM, CambrianMetaForCausalLM):
config_class = CambrianConfig
def __init__(self, config):
super(LlamaForCausalLM, self).__init__(config)
self.model = CambrianLlamaModel(config)
self.pretraining_tp = config.pretraining_tp
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
# pyre-fixme[9]: input_ids has type `LongTensor`; used as `None`.
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
image_aux_attention_masks_list: Optional[List[torch.Tensor]] = None,
image_sizes: Optional[List[List[int]]] = None,
return_dict: Optional[bool] = None,
cache_position=None,
) -> Union[Tuple, CausalLMOutputWithPast]:
final_vision_feature_size = None
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels,
vision_tower_aux_feature_list,
vision_tower_aux_attention_masks_list,
final_vision_feature_size,
global_context_feature,
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
image_aux_attention_masks_list,
image_sizes,
)
if IS_XLA_AVAILABLE:
# Very Important for TorchXLA
# self.model.gradient_checkpointing = False
# pyre-fixme[21]: Could not find module `torch_xla.utils.checkpoint`.
from torch_xla.utils.checkpoint import checkpoint
# self.model.gradient_checkpointing = True
# pyre-fixme[16]: `CambrianLlamaModel` has no attribute
# `_gradient_checkpointing_func`.
self.model._gradient_checkpointing_func = checkpoint
output_attentions = (
output_attentions
if output_attentions is not None
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute `config`.
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# training
if IS_XLA_AVAILABLE:
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
# pyre-fixme[29]: `CambrianLlamaModel` is not a function.
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
# pyre-fixme[61]: `vision_tower_aux_feature_list` is undefined, or
# not always defined.
vision_tower_aux_feature_list=vision_tower_aux_feature_list,
# pyre-fixme[61]: `vision_tower_aux_attention_masks_list` is
# undefined, or not always defined.
vision_tower_aux_attention_masks_list=vision_tower_aux_attention_masks_list,
final_vision_feature_size=final_vision_feature_size,
# pyre-fixme[61]: `global_context_feature` is undefined, or not
# always defined.
global_context_feature=global_context_feature,
)
# inference
else:
if hasattr(self, "vision_tower_aux_feature_list"):
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
# pyre-fixme[29]: `CambrianLlamaModel` is not a function.
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
vision_tower_aux_feature_list=(
# pyre-fixme[61]: `vision_tower_aux_feature_list` is
# undefined, or not always defined.
vision_tower_aux_feature_list
if inputs_embeds is None
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no
# attribute `vision_tower_aux_feature_list`.
else self.vision_tower_aux_feature_list
),
vision_tower_aux_attention_masks_list=(
# pyre-fixme[61]: `vision_tower_aux_attention_masks_list` is
# undefined, or not always defined.
vision_tower_aux_attention_masks_list
if inputs_embeds is None
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no
# attribute `vision_tower_aux_attention_masks_list`.
else self.vision_tower_aux_attention_masks_list
),
final_vision_feature_size=(
final_vision_feature_size
if inputs_embeds is None
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no
# attribute `final_vision_feature_size`.
else self.final_vision_feature_size
),
global_context_feature=(
# pyre-fixme[61]: `global_context_feature` is undefined, or
# not always defined.
global_context_feature
if inputs_embeds is None
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no
# attribute `global_context_feature`.
else self.global_context_feature
),
)
else:
# pyre-fixme[29]: `CambrianLlamaModel` is not a function.
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
# final_vision_feature_size=final_vision_feature_size,
)
hidden_states = outputs[0]
if self.config.pretraining_tp > 1:
lm_head_slices = self.lm_head.weight.split(
self.vocab_size // self.config.pretraining_tp, dim=0
)
logits = [
F.linear(hidden_states, lm_head_slices[i])
for i in range(self.config.pretraining_tp)
]
logits = torch.cat(logits, dim=-1)
else:
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(
inputs,
position_ids,
attention_mask,
_,
inputs_embeds,
_,
vision_tower_aux_feature_list,
vision_tower_aux_attention_masks_list,
final_vision_feature_size,
global_context_feature,
) = self.prepare_inputs_labels_for_multimodal(
inputs,
position_ids,
attention_mask,
None,
None,
images,
image_sizes=image_sizes,
)
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute
# `vision_tower_aux_feature_list`.
self.vision_tower_aux_feature_list = vision_tower_aux_feature_list
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute
# `vision_tower_aux_attention_masks_list`.
self.vision_tower_aux_attention_masks_list = (
vision_tower_aux_attention_masks_list
)
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute
# `final_vision_feature_size`.
self.final_vision_feature_size = final_vision_feature_size
# pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute
# `global_context_feature`.
self.global_context_feature = global_context_feature
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
# pyre-fixme[16]: `LlamaForCausalLM` has no attribute `generate`.
return super().generate(
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
):
images = kwargs.pop("images", None)
image_sizes = kwargs.pop("image_sizes", None)
inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
**kwargs,
)
if images is not None:
inputs["images"] = images
if image_sizes is not None:
inputs["image_sizes"] = image_sizes
return inputs
AutoConfig.register("cambrian_llama", CambrianConfig)
AutoModelForCausalLM.register(CambrianConfig, CambrianLlamaForCausalLM) |