|
|
|
import re |
|
|
|
import torch.nn as nn |
|
|
|
|
|
class IdentityMap(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return x |
|
|
|
@property |
|
def config(self): |
|
return {"mm_projector_type": "identity"} |
|
|
|
|
|
class SimpleResBlock(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.pre_norm = nn.LayerNorm(channels) |
|
|
|
self.proj = nn.Sequential( |
|
nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels) |
|
) |
|
|
|
def forward(self, x): |
|
x = self.pre_norm(x) |
|
return x + self.proj(x) |
|
|
|
|
|
def build_vision_projector(config, delay_load=False, **kwargs): |
|
projector_type = getattr(config, "mm_projector_type", "linear") |
|
config.mm_hidden_size = 256 |
|
|
|
if projector_type == "linear": |
|
return nn.Linear(config.mm_hidden_size, config.hidden_size) |
|
|
|
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type) |
|
if mlp_gelu_match: |
|
mlp_depth = int(mlp_gelu_match.group(1)) |
|
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) |
|
return nn.Sequential(*modules) |
|
|
|
if projector_type == "identity": |
|
return IdentityMap() |
|
|
|
raise ValueError(f"Unknown projector type: {projector_type}") |