jadechoghari commited on
Commit
2b42a47
1 Parent(s): 52a563c

add initial files

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ pytorch_model.bin.1 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - shenxq/OneVision
4
+ base_model:
5
+ - Qwen/Qwen2-7B-Instruct
6
+ ---
config.json ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jadechoghari/LongVU_Qwen2_7B_img",
3
+ "architectures": [
4
+ "CambrianQwenForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "modeling.CambrianConfig",
8
+ "AutoModel": "modeling.CambrianQwenForCausalLM",
9
+ "AutoModelForCausalLM": "modeling.CambrianQwenForCausalLM"
10
+ },
11
+ "attention_bias": false,
12
+ "attention_dropout": 0.0,
13
+ "bos_token_id": 151643,
14
+ "connect_layer": 2,
15
+ "connector_depth": 3,
16
+ "connector_only": true,
17
+ "dino_threshold": 0.83,
18
+ "drop_threshold": 0.8,
19
+ "eos_token_id": 151645,
20
+ "frame_pos": false,
21
+ "freeze_mm_mlp_adapter": false,
22
+ "hidden_act": "silu",
23
+ "hidden_size": 3584,
24
+ "highres": false,
25
+ "highres_connect": false,
26
+ "image_aspect_ratio": "pad",
27
+ "image_position": 91,
28
+ "image_token_len": 576,
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 18944,
31
+ "is_image_newline": true,
32
+ "is_st_sampler": false,
33
+ "lowres_token": 8,
34
+ "max_position_embeddings": 32768,
35
+ "max_window_layers": 28,
36
+ "mm_patch_merge_type": "flat",
37
+ "mm_projector_lr": null,
38
+ "mm_projector_type": "sva",
39
+ "mm_use_im_patch_token": false,
40
+ "mm_use_im_start_end": false,
41
+ "mm_vision_sampler_lr": null,
42
+ "mm_vision_select_feature": "patch",
43
+ "mm_vision_select_layer": -2,
44
+ "mm_vision_tower_aux_list": [
45
+ "siglip/CLIP-ViT-SO400M-14-384",
46
+ "facebook/dinov2-giant-res378"
47
+ ],
48
+ "mm_vision_tower_aux_token_len_list": [
49
+ 576,
50
+ 576
51
+ ],
52
+ "mm_vision_tower_lr": null,
53
+ "model_type": "cambrian_qwen",
54
+ "num_attention_heads": 28,
55
+ "num_hidden_layers": 28,
56
+ "num_key_value_heads": 4,
57
+ "num_of_vision_sampler_layers": 10,
58
+ "num_query_group": 1,
59
+ "pretraining_tp": 1,
60
+ "query_num_list": [
61
+ 576
62
+ ],
63
+ "rms_norm_eps": 1e-06,
64
+ "rope_scaling": null,
65
+ "rope_theta": 1000000.0,
66
+ "sliding_window": null,
67
+ "spmd_debug": null,
68
+ "spmd_fsdp_sharding": null,
69
+ "spmd_mesh": null,
70
+ "start_of_vision_sampler_layers": 0,
71
+ "stride_of_vision_sampler_layers": 3,
72
+ "tie_word_embeddings": false,
73
+ "tokenizer_model_max_length": 8192,
74
+ "tokenizer_padding_side": "right",
75
+ "torch_dtype": "float32",
76
+ "transformers_version": "4.44.2",
77
+ "tune_mm_mlp_adapter": false,
78
+ "unfreeze_mm_vision_tower": false,
79
+ "use_cache": false,
80
+ "use_mm_proj": true,
81
+ "use_pos_skipping": false,
82
+ "use_sliding_window": false,
83
+ "vision_hidden_size": 1024,
84
+ "vision_tower_aux_token_len_list": [
85
+ 576,
86
+ 576
87
+ ],
88
+ "vocab_size": 152064
89
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.40.0.dev0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modeling.py ADDED
@@ -0,0 +1,471 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+ from torch.nn import CrossEntropyLoss
22
+
23
+ from transformers import AutoConfig, AutoModelForCausalLM
24
+ from transformers.cache_utils import Cache, DynamicCache
25
+ from transformers.generation.utils import GenerateOutput
26
+
27
+ from transformers.modeling_outputs import (
28
+ BaseModelOutputWithPast,
29
+ CausalLMOutputWithPast,
30
+ )
31
+ from transformers.utils import logging
32
+
33
+ from .cambrian_arch import CambrianMetaForCausalLM, CambrianMetaModel
34
+
35
+ IS_XLA_AVAILABLE = False
36
+
37
+ from transformers import Qwen2Config, Qwen2ForCausalLM, Qwen2Model
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+
42
+ class CambrianConfig(Qwen2Config):
43
+ model_type = "cambrian_qwen"
44
+
45
+ debug = "debug"
46
+
47
+
48
+ class CambrianQwenModel(CambrianMetaModel, Qwen2Model):
49
+ config_class = CambrianConfig
50
+
51
+ def __init__(self, config: Qwen2Config):
52
+ super(CambrianQwenModel, self).__init__(config)
53
+
54
+ def forward(
55
+ self,
56
+ # pyre-fixme[9]: input_ids has type `LongTensor`; used as `None`.
57
+ input_ids: torch.LongTensor = None,
58
+ attention_mask: Optional[torch.Tensor] = None,
59
+ position_ids: Optional[torch.LongTensor] = None,
60
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
61
+ inputs_embeds: Optional[torch.FloatTensor] = None,
62
+ use_cache: Optional[bool] = None,
63
+ output_attentions: Optional[bool] = None,
64
+ output_hidden_states: Optional[bool] = None,
65
+ return_dict: Optional[bool] = None,
66
+ cache_position: Optional[torch.LongTensor] = None,
67
+ vision_tower_aux_feature_list: Optional[List[torch.FloatTensor]] = None,
68
+ vision_tower_aux_attention_masks_list: Optional[List[torch.Tensor]] = None,
69
+ final_vision_feature_size: Optional[List[tuple]] = None,
70
+ global_context_feature: Optional[torch.Tensor] = None,
71
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
72
+ output_attentions = (
73
+ output_attentions
74
+ if output_attentions is not None
75
+ # pyre-fixme[16]: `CambrianQwenModel` has no attribute `config`.
76
+ else self.config.output_attentions
77
+ )
78
+ output_hidden_states = (
79
+ output_hidden_states
80
+ if output_hidden_states is not None
81
+ else self.config.output_hidden_states
82
+ )
83
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
84
+
85
+ return_dict = (
86
+ return_dict if return_dict is not None else self.config.use_return_dict
87
+ )
88
+
89
+ if (input_ids is None) ^ (inputs_embeds is not None):
90
+ raise ValueError(
91
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
92
+ )
93
+
94
+ # pyre-fixme[16]: `CambrianQwenModel` has no attribute `gradient_checkpointing`.
95
+ # pyre-fixme[16]: `CambrianQwenModel` has no attribute `training`.
96
+ if self.gradient_checkpointing and self.training:
97
+ if use_cache:
98
+ logger.warning_once(
99
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
100
+ )
101
+ use_cache = False
102
+
103
+ use_legacy_cache = False
104
+ if use_cache and not isinstance(past_key_values, Cache):
105
+ use_legacy_cache = True
106
+ # pyre-fixme[6]: For 1st argument expected
107
+ # `Optional[Tuple[Tuple[FloatTensor]]]` but got
108
+ # `Optional[List[FloatTensor]]`.
109
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
110
+ logger.warning_once(
111
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
112
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
113
+ )
114
+
115
+ if inputs_embeds is None:
116
+ # pyre-fixme[16]: `CambrianQwenModel` has no attribute `embed_tokens`.
117
+ inputs_embeds = self.embed_tokens(input_ids)
118
+
119
+ if cache_position is None:
120
+ past_seen_tokens = (
121
+ # pyre-fixme[16]: Item `List` of `Union[List[torch._C.FloatTensor],
122
+ # DynamicCache]` has no attribute `get_seq_length`.
123
+ past_key_values.get_seq_length() if past_key_values is not None else 0
124
+ )
125
+ cache_position = torch.arange(
126
+ past_seen_tokens,
127
+ past_seen_tokens + inputs_embeds.shape[1],
128
+ device=inputs_embeds.device,
129
+ )
130
+ if position_ids is None:
131
+ position_ids = cache_position.unsqueeze(0)
132
+
133
+ # pyre-fixme[16]: `CambrianQwenModel` has no attribute `_update_causal_mask`.
134
+ causal_mask = self._update_causal_mask(
135
+ attention_mask,
136
+ inputs_embeds,
137
+ cache_position,
138
+ past_key_values,
139
+ output_attentions,
140
+ )
141
+
142
+ hidden_states = inputs_embeds
143
+
144
+ # decoder layers
145
+ all_hidden_states = () if output_hidden_states else None
146
+ all_self_attns = () if output_attentions else None
147
+ next_decoder_cache = None
148
+
149
+ # pyre-fixme[16]: `CambrianQwenModel` has no attribute `layers`.
150
+ for i, decoder_layer in enumerate(self.layers):
151
+ if output_hidden_states:
152
+ all_hidden_states += (hidden_states,)
153
+
154
+ if self.gradient_checkpointing and self.training:
155
+ # pyre-fixme[16]: `CambrianQwenModel` has no attribute
156
+ # `_gradient_checkpointing_func`.
157
+ layer_outputs = self._gradient_checkpointing_func(
158
+ decoder_layer.__call__,
159
+ hidden_states,
160
+ causal_mask,
161
+ position_ids,
162
+ past_key_values,
163
+ output_attentions,
164
+ use_cache,
165
+ cache_position,
166
+ )
167
+ else:
168
+ layer_outputs = decoder_layer(
169
+ hidden_states,
170
+ attention_mask=causal_mask,
171
+ position_ids=position_ids,
172
+ past_key_value=past_key_values,
173
+ output_attentions=output_attentions,
174
+ use_cache=use_cache,
175
+ cache_position=cache_position,
176
+ )
177
+
178
+ hidden_states = layer_outputs[0]
179
+
180
+ if use_cache:
181
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
182
+
183
+ if output_attentions:
184
+ all_self_attns += (layer_outputs[1],)
185
+
186
+ # pyre-fixme[16]: `CambrianQwenModel` has no attribute `norm`.
187
+ hidden_states = self.norm(hidden_states)
188
+
189
+ # add hidden states from the last decoder layer
190
+ if output_hidden_states:
191
+ all_hidden_states += (hidden_states,)
192
+
193
+ next_cache = None
194
+ if use_cache:
195
+ next_cache = (
196
+ next_decoder_cache.to_legacy_cache()
197
+ if use_legacy_cache
198
+ else next_decoder_cache
199
+ )
200
+
201
+ if not return_dict:
202
+ return tuple(
203
+ v
204
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
205
+ if v is not None
206
+ )
207
+ return BaseModelOutputWithPast(
208
+ last_hidden_state=hidden_states,
209
+ past_key_values=next_cache,
210
+ hidden_states=all_hidden_states,
211
+ attentions=all_self_attns,
212
+ )
213
+
214
+
215
+ class CambrianQwenForCausalLM(Qwen2ForCausalLM, CambrianMetaForCausalLM):
216
+ config_class = CambrianConfig
217
+
218
+ def __init__(self, config):
219
+ # super(Qwen2ForCausalLM, self).__init__(config)
220
+ Qwen2ForCausalLM.__init__(self, config)
221
+ config.model_type = "cambrian_qwen"
222
+ config.rope_scaling = None
223
+
224
+ self.model = CambrianQwenModel(config)
225
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
226
+ # Initialize weights and apply final processing
227
+ self.post_init()
228
+
229
+ def get_model(self):
230
+ return self.model
231
+
232
+ def forward(
233
+ self,
234
+ # pyre-fixme[9]: input_ids has type `LongTensor`; used as `None`.
235
+ input_ids: torch.LongTensor = None,
236
+ attention_mask: Optional[torch.Tensor] = None,
237
+ position_ids: Optional[torch.LongTensor] = None,
238
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
239
+ inputs_embeds: Optional[torch.FloatTensor] = None,
240
+ labels: Optional[torch.LongTensor] = None,
241
+ use_cache: Optional[bool] = None,
242
+ output_attentions: Optional[bool] = None,
243
+ output_hidden_states: Optional[bool] = None,
244
+ images: Optional[torch.FloatTensor] = None,
245
+ image_aux_attention_masks_list: Optional[List[torch.Tensor]] = None,
246
+ image_sizes: Optional[List[List[int]]] = None,
247
+ return_dict: Optional[bool] = None,
248
+ modalities: Optional[List[str]] = ["image"],
249
+ dpo_forward: Optional[bool] = False,
250
+ cache_position=None,
251
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
252
+
253
+ input_image_features = None
254
+ highres_image_features = None
255
+ frame_split_sizes = None
256
+
257
+ if inputs_embeds is None:
258
+ (
259
+ input_ids,
260
+ position_ids,
261
+ attention_mask,
262
+ past_key_values,
263
+ inputs_embeds,
264
+ labels,
265
+ vision_tower_aux_feature_list,
266
+ vision_tower_aux_attention_masks_list,
267
+ final_vision_feature_size,
268
+ global_context_feature,
269
+ ) = self.prepare_inputs_labels_for_multimodal(
270
+ input_ids,
271
+ position_ids,
272
+ attention_mask,
273
+ past_key_values,
274
+ labels,
275
+ images,
276
+ image_aux_attention_masks_list,
277
+ image_sizes,
278
+ )
279
+
280
+ if dpo_forward:
281
+ # pyre-fixme[29]: `CambrianQwenModel` is not a function.
282
+ outputs = self.model(
283
+ input_ids=input_ids,
284
+ attention_mask=attention_mask,
285
+ position_ids=position_ids,
286
+ past_key_values=past_key_values,
287
+ inputs_embeds=inputs_embeds,
288
+ use_cache=use_cache,
289
+ output_attentions=output_attentions,
290
+ output_hidden_states=output_hidden_states,
291
+ return_dict=return_dict,
292
+ )
293
+
294
+ hidden_states = outputs[0]
295
+ logits = self.lm_head(hidden_states)
296
+ return logits, labels
297
+
298
+ else:
299
+ if hasattr(self, "vision_tower_aux_feature_list"):
300
+ # pyre-fixme[29]: `CambrianQwenModel` is not a function.
301
+ outputs = self.model(
302
+ input_ids=input_ids,
303
+ attention_mask=attention_mask,
304
+ position_ids=position_ids,
305
+ past_key_values=past_key_values,
306
+ inputs_embeds=inputs_embeds,
307
+ use_cache=use_cache,
308
+ output_attentions=output_attentions,
309
+ output_hidden_states=output_hidden_states,
310
+ return_dict=return_dict,
311
+ vision_tower_aux_feature_list=(
312
+ # pyre-fixme[61]: `vision_tower_aux_feature_list` is
313
+ # undefined, or not always defined.
314
+ vision_tower_aux_feature_list
315
+ if inputs_embeds is None
316
+ # pyre-fixme[16]: `CambrianQwenForCausalLM` has no attribute
317
+ # `vision_tower_aux_feature_list`.
318
+ else self.vision_tower_aux_feature_list
319
+ ),
320
+ vision_tower_aux_attention_masks_list=(
321
+ # pyre-fixme[61]: `vision_tower_aux_attention_masks_list` is
322
+ # undefined, or not always defined.
323
+ vision_tower_aux_attention_masks_list
324
+ if inputs_embeds is None
325
+ # pyre-fixme[16]: `CambrianQwenForCausalLM` has no attribute
326
+ # `vision_tower_aux_attention_masks_list`.
327
+ else self.vision_tower_aux_attention_masks_list
328
+ ),
329
+ final_vision_feature_size=(
330
+ # pyre-fixme[61]: `final_vision_feature_size` is undefined,
331
+ # or not always defined.
332
+ final_vision_feature_size
333
+ if inputs_embeds is None
334
+ # pyre-fixme[16]: `CambrianQwenForCausalLM` has no attribute
335
+ # `final_vision_feature_size`.
336
+ else self.final_vision_feature_size
337
+ ),
338
+ global_context_feature=(
339
+ # pyre-fixme[61]: `global_context_feature` is undefined, or
340
+ # not always defined.
341
+ global_context_feature
342
+ if inputs_embeds is None
343
+ # pyre-fixme[16]: `CambrianQwenForCausalLM` has no attribute
344
+ # `global_context_feature`.
345
+ else self.global_context_feature
346
+ ),
347
+ )
348
+ else:
349
+ # pyre-fixme[29]: `CambrianQwenModel` is not a function.
350
+ outputs = self.model(
351
+ input_ids=input_ids,
352
+ attention_mask=attention_mask,
353
+ position_ids=position_ids,
354
+ past_key_values=past_key_values,
355
+ inputs_embeds=inputs_embeds,
356
+ use_cache=use_cache,
357
+ output_attentions=output_attentions,
358
+ output_hidden_states=output_hidden_states,
359
+ return_dict=return_dict,
360
+ # final_vision_feature_size=final_vision_feature_size,
361
+ )
362
+
363
+ hidden_states = outputs[0]
364
+ logits = self.lm_head(hidden_states)
365
+ logits = logits.float()
366
+
367
+ loss = None
368
+ if labels is not None:
369
+ # Shift so that tokens < n predict n
370
+ shift_logits = logits[..., :-1, :].contiguous()
371
+ shift_labels = labels[..., 1:].contiguous()
372
+ # Flatten the tokens
373
+ loss_fct = CrossEntropyLoss()
374
+ # pyre-fixme[16]: `CambrianQwenForCausalLM` has no attribute `config`.
375
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
376
+ shift_labels = shift_labels.view(-1)
377
+ # Enable model parallelism
378
+ shift_labels = shift_labels.to(shift_logits.device)
379
+ loss = loss_fct(shift_logits, shift_labels)
380
+
381
+ if not return_dict:
382
+ output = (logits,) + outputs[1:]
383
+ return (loss,) + output if loss is not None else output
384
+
385
+ return CausalLMOutputWithPast(
386
+ loss=loss,
387
+ logits=logits,
388
+ past_key_values=outputs.past_key_values,
389
+ hidden_states=outputs.hidden_states,
390
+ attentions=outputs.attentions,
391
+ )
392
+
393
+ @torch.no_grad()
394
+ def generate(
395
+ self,
396
+ inputs: Optional[torch.Tensor] = None,
397
+ images: Optional[torch.Tensor] = None,
398
+ image_sizes: Optional[torch.Tensor] = None,
399
+ **kwargs,
400
+ ) -> Union[GenerateOutput, torch.LongTensor]:
401
+ position_ids = kwargs.pop("position_ids", None)
402
+ attention_mask = kwargs.pop("attention_mask", None)
403
+ if "inputs_embeds" in kwargs:
404
+ raise NotImplementedError("`inputs_embeds` is not supported")
405
+
406
+ if images is not None:
407
+ (
408
+ inputs,
409
+ position_ids,
410
+ attention_mask,
411
+ _,
412
+ inputs_embeds,
413
+ _,
414
+ vision_tower_aux_feature_list,
415
+ vision_tower_aux_attention_masks_list,
416
+ final_vision_feature_size,
417
+ global_context_feature,
418
+ ) = self.prepare_inputs_labels_for_multimodal(
419
+ inputs,
420
+ position_ids,
421
+ attention_mask,
422
+ None,
423
+ None,
424
+ images,
425
+ image_sizes=image_sizes,
426
+ )
427
+ # pyre-fixme[16]: `CambrianQwenForCausalLM` has no attribute
428
+ # `vision_tower_aux_feature_list`.
429
+ self.vision_tower_aux_feature_list = vision_tower_aux_feature_list
430
+ # pyre-fixme[16]: `CambrianQwenForCausalLM` has no attribute
431
+ # `vision_tower_aux_attention_masks_list`.
432
+ self.vision_tower_aux_attention_masks_list = (
433
+ vision_tower_aux_attention_masks_list
434
+ )
435
+ # pyre-fixme[16]: `CambrianQwenForCausalLM` has no attribute
436
+ # `final_vision_feature_size`.
437
+ self.final_vision_feature_size = final_vision_feature_size
438
+ # pyre-fixme[16]: `CambrianQwenForCausalLM` has no attribute
439
+ # `global_context_feature`.
440
+ self.global_context_feature = global_context_feature
441
+ else:
442
+ inputs_embeds = self.get_model().embed_tokens(inputs)
443
+
444
+ # pyre-fixme[16]: `Qwen2ForCausalLM` has no attribute `generate`.
445
+ return super().generate(
446
+ position_ids=position_ids,
447
+ attention_mask=attention_mask,
448
+ inputs_embeds=inputs_embeds,
449
+ **kwargs,
450
+ )
451
+
452
+ def prepare_inputs_for_generation(
453
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
454
+ ):
455
+ images = kwargs.pop("images", None)
456
+ image_sizes = kwargs.pop("image_sizes", None)
457
+ inputs = super().prepare_inputs_for_generation(
458
+ input_ids,
459
+ past_key_values=past_key_values,
460
+ inputs_embeds=inputs_embeds,
461
+ **kwargs,
462
+ )
463
+ if images is not None:
464
+ inputs["images"] = images
465
+ if image_sizes is not None:
466
+ inputs["image_sizes"] = image_sizes
467
+ return inputs
468
+
469
+
470
+ AutoConfig.register("cambrian_qwen", CambrianConfig)
471
+ AutoModelForCausalLM.register(CambrianConfig, CambrianQwenForCausalLM)
multimodal_encoder_builder.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pyre-unsafe
2
+ import copy
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from transformers import AutoImageProcessor, Dinov2Config, Dinov2Model, SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
6
+ from abc import ABC, abstractmethod
7
+ import torch.nn as nn
8
+
9
+
10
+ class ProcessorWrapper:
11
+ def __init__(
12
+ self,
13
+ transform,
14
+ height=378,
15
+ width=378,
16
+ image_mean=[0.48145466, 0.4578275, 0.40821073],
17
+ ):
18
+ self._crop_size = {
19
+ "height": height,
20
+ "width": width,
21
+ }
22
+ self._transforms = transform
23
+ # print(transform)
24
+ self.image_mean = image_mean
25
+
26
+ @property
27
+ def crop_size(self):
28
+ return self._crop_size
29
+
30
+ def preprocess(self, image, return_tensors="pt"):
31
+ # Ensure image is a PIL Image
32
+ output = {}
33
+ output["pixel_values"] = [self._transforms(image)]
34
+ return output
35
+
36
+
37
+ class BaseVisionTower(nn.Module):
38
+ def __init__(self, vision_tower_name, args, delay_load=False):
39
+ super().__init__()
40
+
41
+ self.is_loaded = False
42
+ self.args = args
43
+
44
+ self.vision_tower_name = vision_tower_name
45
+ self.select_layer = args.mm_vision_select_layer
46
+ self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
47
+ self.unfreeze_mm_vision_tower = getattr(args, "unfreeze_mm_vision_tower", False)
48
+ self.delay_load = delay_load
49
+
50
+ @abstractmethod
51
+ def load_model(self, device_map=None):
52
+ raise NotImplementedError("Subclasses must implement load_model")
53
+
54
+ @abstractmethod
55
+ def _forward(self, images):
56
+ raise NotImplementedError("Subclasses must implement forward")
57
+
58
+ def forward(self, images):
59
+ if type(images) is list:
60
+ image_features = [self._forward(image.unsqueeze(0)) for image in images]
61
+ else:
62
+ image_features = self._forward(images)
63
+
64
+ return image_features
65
+
66
+ @property
67
+ def dummy_feature(self):
68
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
69
+
70
+ @property
71
+ def dtype(self):
72
+ # Dynamically infer the dtype from the first parameter, if not explicitly specified
73
+ if hasattr(self.vision_tower, "dtype"):
74
+ return self.vision_tower.dtype
75
+ else:
76
+ params = list(self.vision_tower.parameters())
77
+ return (
78
+ params[0].dtype if len(params) > 0 else torch.float32
79
+ ) # Default to torch.float32 if no parameters
80
+
81
+ @property
82
+ def device(self):
83
+ # Dynamically infer the device from the first parameter, if not explicitly specified
84
+ if hasattr(self.vision_tower, "device"):
85
+ return self.vision_tower.device
86
+ else:
87
+ params = list(self.vision_tower.parameters())
88
+ return (
89
+ params[0].device if len(params) > 0 else torch.device("cpu")
90
+ ) # Default to CPU if no parameters
91
+
92
+ @property
93
+ def config(self):
94
+ if self.is_loaded:
95
+ return self.vision_tower.config
96
+ else:
97
+ return self.cfg_only
98
+
99
+ @property
100
+ def hidden_size(self):
101
+ try:
102
+ return self.config.hidden_size
103
+ except:
104
+ return self._hidden_size
105
+
106
+ @property
107
+ def image_size(self): # resolution
108
+ # return self.config.image_size
109
+ try:
110
+ return self.config.image_size
111
+ except:
112
+ return self._image_size
113
+
114
+ @property
115
+ def patch_size(self):
116
+ # return self.config.patch_size
117
+ try:
118
+ return self.config.patch_size
119
+ except:
120
+ return self._patch_size
121
+
122
+ @property
123
+ def num_patches_per_side(self):
124
+ if self._interp_size is not None:
125
+ return int(self._interp_size**0.5)
126
+ try:
127
+ return self.image_size // self.patch_size
128
+ except:
129
+ return self._num_patches_per_side
130
+
131
+ @property
132
+ def num_patches(self):
133
+ if self._interp_size is not None:
134
+ return self._interp_size
135
+ try:
136
+ return self.num_patches_per_side**2
137
+ except:
138
+ return self._num_patches
139
+
140
+
141
+ class DinoVisionTower(BaseVisionTower):
142
+ def __init__(self, vision_tower, args, delay_load=False):
143
+ super(DinoVisionTower, self).__init__(vision_tower, args, delay_load)
144
+
145
+ model_path = "facebook/dinov2-giant"
146
+ base_model_name, res, interp = model_path, 378, 576
147
+ self._vision_tower_name = vision_tower
148
+ self.vision_tower_name = base_model_name
149
+ self._image_size = res
150
+ self._interp_size = interp
151
+ self._patch_size = 14 # default patch size
152
+
153
+ if not self.delay_load:
154
+ self.load_model()
155
+ else:
156
+ self.cfg_only = Dinov2Config.from_pretrained(self.vision_tower_name)
157
+
158
+ def load_model(self, device_map=None):
159
+
160
+ self.vision_tower = Dinov2Model.from_pretrained(self.vision_tower_name)
161
+ """ValueError: Dinov2Model does not support `device_map='auto'`. To implement support, the model class needs to implement the `_no_split_modules` attribute."""
162
+ self.vision_tower._no_split_modules = ["Dinov2SwiGLUFFN"]
163
+
164
+ _image_size = self.vision_tower.config.image_size
165
+ if self._image_size is None:
166
+ self._image_size = _image_size
167
+
168
+ # increase shortest edge to prevent edge case crops
169
+ default_shortest_ratio = 8 / 7 # 224/256
170
+ # shortest_edge = int(default_shortest_ratio * self._image_size)
171
+ shortest_edge = self._image_size
172
+
173
+ processor = AutoImageProcessor.from_pretrained(
174
+ self.vision_tower_name,
175
+ crop_size=dict(height=self._image_size, width=self._image_size),
176
+ size=dict(shortest_edge=shortest_edge),
177
+ )
178
+ self.image_processor = processor
179
+
180
+ # Assign the output channels of the projection convolution as the hidden size
181
+ self._hidden_size = (
182
+ self.vision_tower.embeddings.patch_embeddings.projection.out_channels
183
+ )
184
+ # Assign the first value of the stride of the projection convolution as the patch size
185
+ self._patch_size = (
186
+ self.vision_tower.embeddings.patch_embeddings.projection.stride[0]
187
+ )
188
+
189
+ # print(self._hidden_size, self._patch_size)
190
+
191
+ self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
192
+ self.is_loaded = True
193
+
194
+ @property
195
+ def image_size(self):
196
+ return self._image_size
197
+
198
+ def feature_select(self, outputs):
199
+ sequence_output = outputs[
200
+ "last_hidden_state"
201
+ ] # batch_size, sequence_length, hidden_size
202
+
203
+ if self.select_feature == "cls_patch":
204
+ image_features = sequence_output
205
+ elif self.select_feature == "patch":
206
+ image_features = sequence_output[:, 1:]
207
+ elif self.select_feature == "cls":
208
+ image_features = sequence_output[:, 0]
209
+ else:
210
+ raise ValueError(f"Unexpected select feature: {self.select_feature}")
211
+ return image_features
212
+
213
+ def interpolate(self, image_features):
214
+ if self._interp_size is None:
215
+ return image_features
216
+
217
+ b, num_tokens, dim = image_features.shape
218
+
219
+ if num_tokens != self.num_patches:
220
+ target_h = target_w = int(self._interp_size**0.5)
221
+ h = w = int(num_tokens**0.5)
222
+
223
+ image_features = image_features.view(b, h, w, dim)
224
+ image_features = image_features.permute(0, 3, 1, 2).contiguous()
225
+
226
+ image_features = F.interpolate(
227
+ image_features.to(torch.float32),
228
+ size=(target_h, target_w),
229
+ mode="bilinear",
230
+ align_corners=False,
231
+ ).to(image_features.dtype)
232
+
233
+ # Permute the dimensions back to (b, target_h, target_w, dim)
234
+ image_features = image_features.permute(0, 2, 3, 1).contiguous()
235
+
236
+ # Flatten the spatial dimensions (target_h, target_w) into a single dimension
237
+ image_features = image_features.flatten(1, 2)
238
+
239
+ return image_features
240
+
241
+ def _forward(self, images):
242
+ # logger.warning(f"images shape: {images.shape}")
243
+ with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
244
+ image_forward_outs = self.vision_tower.forward(
245
+ images.to(device=self.device, dtype=self.dtype)
246
+ )
247
+ # logger.warning(f"image_forward_outs shape: {image_forward_outs['last_hidden_state'].shape}")
248
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
249
+ # logger.warning(f"image_features shape: {image_features.shape}")
250
+ interp_features = self.interpolate(image_features)
251
+ # logger.warning(f"interp_features shape: {interp_features.shape}")
252
+ return interp_features
253
+
254
+ @property
255
+ def num_patches_per_side(self):
256
+ return int(self.num_patches**0.5)
257
+
258
+ @property
259
+ def num_patches(self):
260
+ if self._interp_size is None:
261
+ return (self._image_size // self._patch_size) ** 2
262
+ else:
263
+ return self._interp_size
264
+
265
+
266
+ # from .siglip_encoder import SiglipVisionTower
267
+ class SiglipVisionTower(BaseVisionTower):
268
+ def __init__(self, vision_tower_name, args, delay_load=False):
269
+ super(SiglipVisionTower, self).__init__(vision_tower_name, args, delay_load)
270
+
271
+ model_path = "google/siglip-so400m-patch14-384"
272
+ base_model_name, res, interp = model_path, 384, 576
273
+ self.vision_tower_name = base_model_name
274
+ self._image_size = res if res is not None else 512
275
+ self._interp_size = interp
276
+ if not self.delay_load:
277
+ self.load_model()
278
+ elif self.unfreeze_mm_vision_tower:
279
+ self.load_model()
280
+ else:
281
+ self._hidden_size = 1152
282
+
283
+ def load_model(self, device_map=None):
284
+ self.vision_model = "siglip"
285
+ # clip_model, processor = create_model_from_pretrained(self.vision_tower_name)
286
+ self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
287
+
288
+ # self.vision_tower = clip_model.visual.trunk
289
+ self.vision_tower.output_tokens = True
290
+
291
+ self._hidden_size = self.vision_tower.config.hidden_size
292
+ self._image_size = self.vision_tower.config.image_size
293
+ self._patch_size = self.vision_tower.config.patch_size
294
+ self.image_processor = SiglipImageProcessor.from_pretrained(
295
+ self.vision_tower_name
296
+ )
297
+
298
+ self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
299
+ self.is_loaded = True
300
+
301
+ def interpolate(self, image_features):
302
+ if self._interp_size is None:
303
+ return image_features
304
+
305
+ b, num_tokens, dim = image_features.shape
306
+
307
+ if num_tokens != self.num_patches:
308
+ target_h = target_w = int(self._interp_size**0.5)
309
+ h = w = int(num_tokens**0.5)
310
+
311
+ image_features = image_features.view(b, h, w, dim)
312
+ image_features = image_features.permute(0, 3, 1, 2).contiguous()
313
+
314
+ image_features = F.interpolate(
315
+ image_features.to(torch.float32),
316
+ size=(target_h, target_w),
317
+ mode="bilinear",
318
+ align_corners=False,
319
+ ).to(image_features.dtype)
320
+
321
+ # Permute the dimensions back to (b, target_h, target_w, dim)
322
+ image_features = image_features.permute(0, 2, 3, 1).contiguous()
323
+
324
+ # Flatten the spatial dimensions (target_h, target_w) into a single dimension
325
+ image_features = image_features.flatten(1, 2)
326
+
327
+ return image_features
328
+
329
+ def _forward(self, images, interpolate_token=576):
330
+ with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
331
+ image_features = self.vision_tower.forward(
332
+ images.to(device=self.device, dtype=self.dtype),
333
+ output_hidden_states=True,
334
+ ).hidden_states[-1]
335
+ interp_features = self.interpolate(image_features)
336
+ return interp_features
337
+
338
+
339
+ def build_vision_tower_aux_list(vision_tower_cfg, **kwargs):
340
+ vision_tower_aux_name_list = getattr(
341
+ vision_tower_cfg,
342
+ "mm_vision_tower_aux_list",
343
+ getattr(vision_tower_cfg, "vision_tower_aux_list", None),
344
+ )
345
+ vision_tower_aux_token_len_list = getattr(
346
+ vision_tower_cfg,
347
+ "mm_vision_tower_aux_token_len_list",
348
+ getattr(vision_tower_cfg, "vision_tower_aux_token_len_list", None),
349
+ )
350
+ vision_tower_aux_list = []
351
+ for vision_tower_aux_name, vision_tower_aux_token_len in zip(
352
+ vision_tower_aux_name_list, vision_tower_aux_token_len_list
353
+ ):
354
+ config = copy.deepcopy(vision_tower_cfg)
355
+ vision_tower_aux_name += "-interp{}".format(vision_tower_aux_token_len)
356
+ if "siglip" in vision_tower_aux_name.lower():
357
+ vision_tower_aux_list.append(
358
+ SiglipVisionTower(vision_tower_aux_name, args=config, **kwargs)
359
+ )
360
+
361
+ # SSL-based Vision Towers
362
+ elif "dinov2" in vision_tower_aux_name.lower():
363
+ vision_tower_aux_list.append(
364
+ DinoVisionTower(vision_tower_aux_name, args=config, **kwargs)
365
+ )
366
+ else:
367
+ raise ValueError(f"Unknown vision tower: {vision_tower_aux_name}")
368
+ return vision_tower_aux_list
multimodal_projector_builder.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pyre-unsafe
2
+ import re
3
+
4
+ import torch.nn as nn
5
+
6
+
7
+ class IdentityMap(nn.Module):
8
+ def __init__(self):
9
+ super().__init__()
10
+
11
+ def forward(self, x, *args, **kwargs):
12
+ return x
13
+
14
+ @property
15
+ def config(self):
16
+ return {"mm_projector_type": "identity"}
17
+
18
+
19
+ class SimpleResBlock(nn.Module):
20
+ def __init__(self, channels):
21
+ super().__init__()
22
+ self.pre_norm = nn.LayerNorm(channels)
23
+
24
+ self.proj = nn.Sequential(
25
+ nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
26
+ )
27
+
28
+ def forward(self, x):
29
+ x = self.pre_norm(x)
30
+ return x + self.proj(x)
31
+
32
+
33
+ def build_vision_projector(config, delay_load=False, **kwargs):
34
+ projector_type = getattr(config, "mm_projector_type", "linear")
35
+ config.mm_hidden_size = 256
36
+
37
+ if projector_type == "linear":
38
+ return nn.Linear(config.mm_hidden_size, config.hidden_size)
39
+
40
+ mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
41
+ if mlp_gelu_match:
42
+ mlp_depth = int(mlp_gelu_match.group(1))
43
+ modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
44
+ for _ in range(1, mlp_depth):
45
+ modules.append(nn.GELU())
46
+ modules.append(nn.Linear(config.hidden_size, config.hidden_size))
47
+ return nn.Sequential(*modules)
48
+
49
+ if projector_type == "identity":
50
+ return IdentityMap()
51
+
52
+ raise ValueError(f"Unknown projector type: {projector_type}")
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02e0431bc1b9fdd5320ee41a5f24c194922a787282a2a6c39bd09e0d7c30f6a7
3
+ size 50329
pytorch_model.bin.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3584ed7ff1371bad4be307b8959d193ff3fa152164a9d47468e80245afa1c0f6
3
+ size 15343470478
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<image>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ }
36
+ },
37
+ "additional_special_tokens": [
38
+ "<|im_start|>",
39
+ "<|im_end|>"
40
+ ],
41
+ "bos_token": null,
42
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
43
+ "clean_up_tokenization_spaces": false,
44
+ "eos_token": "<|im_end|>",
45
+ "errors": "replace",
46
+ "model_max_length": 32768,
47
+ "pad_token": "<|endoftext|>",
48
+ "padding_side": "right",
49
+ "processor_class": "LlavaProcessor",
50
+ "split_special_tokens": false,
51
+ "tokenizer_class": "Qwen2Tokenizer",
52
+ "unk_token": null
53
+ }
vision_sampler.py ADDED
@@ -0,0 +1,566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.utils.checkpoint
6
+ from torch import nn
7
+
8
+
9
+ # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
10
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
11
+ """
12
+ grid_size: int of the grid height and width
13
+ return:
14
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
15
+ """
16
+ grid_h = np.arange(grid_size, dtype=np.float32)
17
+ grid_w = np.arange(grid_size, dtype=np.float32)
18
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
19
+ grid = np.stack(grid, axis=0)
20
+
21
+ grid = grid.reshape([2, 1, grid_size, grid_size])
22
+
23
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
24
+ if cls_token:
25
+ pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
26
+ return pos_embed
27
+
28
+
29
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
30
+ assert embed_dim % 2 == 0
31
+
32
+ # use half of dimensions to encode grid_h
33
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
34
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
35
+
36
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
37
+ return emb
38
+
39
+
40
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
41
+ """
42
+ embed_dim: output dimension for each position
43
+ pos: a list of positions to be encoded: size (M,)
44
+ out: (M, D)
45
+ """
46
+ assert embed_dim % 2 == 0
47
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
48
+ omega /= embed_dim / 2.0
49
+ omega = 1.0 / 10000**omega # (D/2,)
50
+
51
+ pos = pos.reshape(-1) # (M,)
52
+ out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
53
+
54
+ emb_sin = np.sin(out) # (M, D/2)
55
+ emb_cos = np.cos(out) # (M, D/2)
56
+
57
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
58
+ return emb
59
+
60
+
61
+ class CrossAttention(nn.Module):
62
+
63
+ def __init__(self, q_dim, kv_dim, hidden_dim, num_heads, attention_bias=False):
64
+ super().__init__()
65
+ self.hidden_dim = hidden_dim
66
+ self.num_heads = num_heads
67
+ self.head_dim = self.hidden_dim // self.num_heads
68
+
69
+ if (self.head_dim * self.num_heads) != self.hidden_dim:
70
+ raise ValueError(
71
+ f"hidden_dim must be divisible by num_heads (got `hidden_dim`: {self.hidden_dim}"
72
+ f" and `num_heads`: {self.num_heads})."
73
+ )
74
+
75
+ self.q_proj = nn.Sequential(
76
+ nn.LayerNorm(q_dim),
77
+ nn.Linear(q_dim, self.num_heads * self.head_dim, bias=attention_bias),
78
+ )
79
+ self.k_proj = nn.Sequential(
80
+ nn.LayerNorm(kv_dim),
81
+ nn.Linear(kv_dim, self.num_heads * self.head_dim, bias=attention_bias),
82
+ )
83
+ self.v_proj = nn.Sequential(
84
+ nn.LayerNorm(kv_dim),
85
+ nn.Linear(kv_dim, self.num_heads * self.head_dim, bias=attention_bias),
86
+ )
87
+ self.o_proj = nn.Linear(
88
+ self.num_heads * self.head_dim, q_dim, bias=attention_bias
89
+ )
90
+
91
+ def forward(self, vision_latents, queries, attention_mask):
92
+
93
+ bsz, q_len, _ = queries.size()
94
+ bsz, v_len, _ = vision_latents.size()
95
+
96
+ query_states = self.q_proj(queries)
97
+ key_states = self.k_proj(vision_latents)
98
+ value_states = self.v_proj(vision_latents)
99
+
100
+ query_states = query_states.view(
101
+ bsz, q_len, self.num_heads, self.head_dim
102
+ ).transpose(1, 2)
103
+ key_states = key_states.view(
104
+ bsz, v_len, self.num_heads, self.head_dim
105
+ ).transpose(1, 2)
106
+ value_states = value_states.view(
107
+ bsz, v_len, self.num_heads, self.head_dim
108
+ ).transpose(1, 2)
109
+
110
+ if attention_mask is not None:
111
+ if attention_mask.size() != (bsz, 1, q_len, v_len):
112
+ raise ValueError(
113
+ f"Attention mask should be of size {(bsz, 1, q_len, v_len)}, but is {attention_mask.size()}"
114
+ )
115
+
116
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
117
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
118
+ if query_states.device.type == "cuda" and attention_mask is not None:
119
+ query_states = query_states.contiguous()
120
+ key_states = key_states.contiguous()
121
+ value_states = value_states.contiguous()
122
+
123
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
124
+ query_states,
125
+ key_states,
126
+ value_states,
127
+ attn_mask=attention_mask,
128
+ )
129
+
130
+ attn_output = attn_output.transpose(1, 2).contiguous()
131
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_dim)
132
+
133
+ attn_output = self.o_proj(attn_output)
134
+
135
+ return attn_output
136
+
137
+
138
+ class AggregationBlock(nn.Module):
139
+ def __init__(
140
+ self, attention, q_dim, kv_dim, hidden_dim, num_heads, attention_bias=False
141
+ ):
142
+ super().__init__()
143
+ self.hidden_dim = hidden_dim
144
+ self.num_heads = num_heads
145
+ self.head_dim = self.hidden_dim // self.num_heads
146
+
147
+ if (self.head_dim * self.num_heads) != self.hidden_dim:
148
+ raise ValueError(
149
+ f"hidden_dim must be divisible by num_heads (got `hidden_dim`: {self.hidden_dim}"
150
+ f" and `num_heads`: {self.num_heads})."
151
+ )
152
+
153
+ self.attention = attention
154
+ if attention:
155
+ self.attention_layer = CrossAttention(
156
+ q_dim, kv_dim, hidden_dim, num_heads, attention_bias
157
+ )
158
+ else:
159
+ self.attention_layer = MLP(kv_dim, q_dim, q_dim)
160
+
161
+ def forward(self, vision_latents, queries, attention_mask):
162
+ if self.attention:
163
+ queries = self.attention_layer(vision_latents, queries, attention_mask)
164
+ else:
165
+ queries = self.attention_layer(vision_latents)
166
+
167
+ return queries
168
+
169
+
170
+ class MultiKVCrossAttention(nn.Module):
171
+
172
+ def __init__(self, q_dim, kv_dim_list, hidden_dim, num_heads, attention_bias=False):
173
+ super().__init__()
174
+
175
+ self.hidden_dim = hidden_dim
176
+ self.num_heads = num_heads
177
+ self.head_dim = self.hidden_dim // self.num_heads
178
+
179
+ if (self.head_dim * self.num_heads) != self.hidden_dim:
180
+ raise ValueError(
181
+ f"hidden_dim must be divisible by num_heads (got `hidden_dim`: {self.hidden_dim}"
182
+ f" and `num_heads`: {self.num_heads})."
183
+ )
184
+
185
+ self.q_proj = nn.Sequential(
186
+ nn.LayerNorm(q_dim),
187
+ nn.Linear(q_dim, self.num_heads * self.head_dim, bias=attention_bias),
188
+ )
189
+ self.num_of_kvs = len(kv_dim_list)
190
+ for i, kv_dim in enumerate(kv_dim_list):
191
+ setattr(
192
+ self,
193
+ "k_proj_{}".format(i),
194
+ nn.Sequential(
195
+ nn.LayerNorm(kv_dim),
196
+ nn.Linear(
197
+ kv_dim, self.num_heads * self.head_dim, bias=attention_bias
198
+ ),
199
+ ),
200
+ )
201
+ setattr(
202
+ self,
203
+ "v_proj_{}".format(i),
204
+ nn.Sequential(
205
+ nn.LayerNorm(kv_dim),
206
+ nn.Linear(
207
+ kv_dim, self.num_heads * self.head_dim, bias=attention_bias
208
+ ),
209
+ ),
210
+ )
211
+ self.o_proj = nn.Linear(
212
+ self.num_heads * self.head_dim, q_dim, bias=attention_bias
213
+ )
214
+
215
+ def forward(
216
+ self,
217
+ queries,
218
+ *vision_latents_attention_mask_list,
219
+ ):
220
+
221
+ vision_latents_list = vision_latents_attention_mask_list[: self.num_of_kvs]
222
+ attention_mask_list = vision_latents_attention_mask_list[self.num_of_kvs :]
223
+
224
+ bsz, q_len, _ = queries.size()
225
+
226
+ query_states = self.q_proj(queries)
227
+ key_states = torch.cat(
228
+ [
229
+ getattr(self, "k_proj_{}".format(i))(vision_latents_list[i])
230
+ for i in range(self.num_of_kvs)
231
+ ],
232
+ dim=1,
233
+ )
234
+ value_states = torch.cat(
235
+ [
236
+ getattr(self, "v_proj_{}".format(i))(vision_latents_list[i])
237
+ for i in range(self.num_of_kvs)
238
+ ],
239
+ dim=1,
240
+ )
241
+
242
+ v_len = key_states.shape[1]
243
+
244
+ query_states = query_states.view(
245
+ bsz, q_len, self.num_heads, self.head_dim
246
+ ).transpose(1, 2)
247
+ key_states = key_states.view(
248
+ bsz, v_len, self.num_heads, self.head_dim
249
+ ).transpose(1, 2)
250
+ value_states = value_states.view(
251
+ bsz, v_len, self.num_heads, self.head_dim
252
+ ).transpose(1, 2)
253
+
254
+ # if kv_weight is not None:
255
+ # kv_weight = kv_weight.unsqueeze(1).expand(-1, self.num_heads, -1, -1)
256
+
257
+ attention_mask = torch.cat(attention_mask_list, dim=-1)
258
+
259
+ if attention_mask is not None:
260
+ if attention_mask.size() != (bsz, 1, q_len, v_len):
261
+ raise ValueError(
262
+ f"Attention mask should be of size {(bsz, 1, q_len, v_len)}, but is {attention_mask.size()}"
263
+ )
264
+
265
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
266
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
267
+ if query_states.device.type == "cuda" and attention_mask is not None:
268
+ query_states = query_states.contiguous()
269
+ key_states = key_states.contiguous()
270
+ value_states = value_states.contiguous()
271
+
272
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
273
+ query_states,
274
+ key_states,
275
+ value_states,
276
+ attn_mask=attention_mask,
277
+ )
278
+ # attn_output = spda(
279
+ # query_states,
280
+ # key_states,
281
+ # value_states,
282
+ # attn_mask=attention_mask,
283
+ # additional_score=kv_weight
284
+ # )
285
+
286
+ attn_output = attn_output.transpose(1, 2).contiguous()
287
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_dim)
288
+
289
+ attn_output = self.o_proj(attn_output)
290
+
291
+ return attn_output
292
+
293
+
294
+ class MLP(nn.Module):
295
+ def __init__(self, d_in, d_hidden, d_out):
296
+ super().__init__()
297
+ self.linear_1 = nn.Linear(d_in, d_hidden, bias=False)
298
+ self.act = nn.GELU()
299
+ self.linear_2 = nn.Linear(d_hidden, d_out, bias=False)
300
+
301
+ def forward(self, x):
302
+ return self.linear_2(self.act(self.linear_1(x)))
303
+
304
+
305
+ class VisionCrossAttentionLayer(nn.Module):
306
+ def __init__(
307
+ self,
308
+ q_dim,
309
+ context_dim,
310
+ kv_dim_list,
311
+ kv_size_list,
312
+ hidden_dim=1024,
313
+ layer_idx=0,
314
+ ):
315
+ super().__init__()
316
+ num_heads = 16
317
+ self.num_of_kvs = len(kv_dim_list)
318
+
319
+ self.proj_context = nn.Linear(context_dim, hidden_dim, bias=False)
320
+ self.proj_in = nn.Linear(q_dim + hidden_dim, hidden_dim, bias=False)
321
+ # if self.num_of_kvs > 1:
322
+ # self.weight_mlp = MLP(q_dim+hidden_dim, hidden_dim, self.num_of_kvs)
323
+ # self.tower_weight = nn.Parameter(torch.zeros((self.num_of_kvs)))
324
+ self.proj_out = MLP(hidden_dim, hidden_dim, q_dim)
325
+
326
+ self.norm = nn.LayerNorm(hidden_dim)
327
+
328
+ self.cross_attn = MultiKVCrossAttention(
329
+ hidden_dim, kv_dim_list, hidden_dim, num_heads
330
+ )
331
+ self.kv_size_list = kv_size_list
332
+ for i, kv_size in enumerate(kv_size_list):
333
+ if kv_size > 1:
334
+ setattr(
335
+ self,
336
+ "pos_embed_{}".format(i),
337
+ nn.Parameter(torch.randn(kv_size**2, hidden_dim)),
338
+ )
339
+ # self.register_buffer("pos_embed_{}".format(i), torch.from_numpy(get_2d_sincos_pos_embed(hidden_dim, kv_size)).float(), persistent=False)
340
+
341
+ def forward(
342
+ self,
343
+ queries,
344
+ context_feature,
345
+ *vision_latents_attention_mask_list,
346
+ ) -> torch.FloatTensor:
347
+
348
+ residual = queries
349
+ # queries = self.proj_in(queries)
350
+ context_feature = self.proj_context(context_feature)
351
+ # queries = queries + context_feature
352
+ queries = torch.cat([queries, context_feature], -1)
353
+
354
+ # if self.num_of_kvs > 1:
355
+ # kv_weight = self.weight_mlp(queries) # B * 1 * num_tower
356
+ # kv_weight = kv_weight + self.tower_weight.view(1, 1, -1)
357
+ # kv_weight = kv_weight.softmax(-1)
358
+ # kv_number_list = [size**2 for size in self.kv_size_list]
359
+ # kv_weight = torch.repeat_interleave(kv_weight, torch.tensor(kv_number_list).to(kv_weight.device), dim=-1)
360
+ # else:
361
+ # kv_weight = None
362
+
363
+ queries = self.proj_in(queries)
364
+
365
+ vision_latents_list = vision_latents_attention_mask_list[: self.num_of_kvs]
366
+ attention_mask_list = vision_latents_attention_mask_list[self.num_of_kvs :]
367
+
368
+ attention_mask_list_reshaped = []
369
+ if attention_mask_list is not None:
370
+ for attention_mask in attention_mask_list:
371
+ attention_mask = attention_mask.view(attention_mask.shape[0], 1, 1, -1)
372
+ attention_mask = attention_mask.expand(-1, -1, queries.shape[1], -1)
373
+ attention_mask_list_reshaped.append(attention_mask)
374
+
375
+ vision_latents_pos_list = []
376
+ for i, vision_latents in enumerate(vision_latents_list):
377
+ if vision_latents.shape[1] > 1:
378
+ vision_latents_pos_list.append(
379
+ vision_latents
380
+ + getattr(self, "pos_embed_{}".format(i))[None, :, :].to(
381
+ vision_latents.dtype
382
+ )
383
+ )
384
+ else:
385
+ vision_latents_pos_list.append(vision_latents)
386
+
387
+ # Cross Attention
388
+ attention_output = self.cross_attn(
389
+ queries, *vision_latents_pos_list, *attention_mask_list_reshaped
390
+ )
391
+
392
+ # attention_output = (attention_output * combination_weight).sum(2)
393
+ queries = queries + attention_output
394
+
395
+ queries = self.norm(queries)
396
+
397
+ queries = self.proj_out(queries)
398
+
399
+ queries = queries + residual
400
+
401
+ return queries
402
+
403
+
404
+ class VisionAggregationLayer(nn.Module):
405
+ def __init__(
406
+ self,
407
+ q_dim,
408
+ context_dim,
409
+ kv_dim_list,
410
+ kv_size_list,
411
+ hidden_dim=1024,
412
+ layer_idx=0,
413
+ ):
414
+ super().__init__()
415
+ num_heads = 16
416
+ self.num_of_kvs = len(kv_dim_list)
417
+
418
+ self.proj_context = nn.Linear(context_dim, hidden_dim, bias=False)
419
+ self.proj_in = nn.Linear(q_dim + hidden_dim, hidden_dim, bias=False)
420
+
421
+ self.proj_out = MLP(hidden_dim, hidden_dim, q_dim)
422
+
423
+ self.norm = nn.LayerNorm(hidden_dim)
424
+
425
+ if self.num_of_kvs > 1:
426
+ self.weight_mlp = MLP(q_dim + hidden_dim, hidden_dim, self.num_of_kvs)
427
+
428
+ for i, kv_size in enumerate(kv_size_list):
429
+ if kv_size > 1:
430
+ setattr(
431
+ self,
432
+ "pos_embed_{}".format(i),
433
+ nn.Parameter(torch.randn(kv_size**2, hidden_dim)),
434
+ )
435
+ setattr(
436
+ self,
437
+ "aggregate_{}".format(i),
438
+ AggregationBlock(
439
+ True, hidden_dim, kv_dim_list[i], hidden_dim, num_heads
440
+ ),
441
+ )
442
+ else:
443
+ setattr(
444
+ self,
445
+ "aggregate_{}".format(i),
446
+ AggregationBlock(
447
+ False, hidden_dim, kv_dim_list[i], hidden_dim, num_heads
448
+ ),
449
+ )
450
+
451
+ def forward(
452
+ self,
453
+ queries,
454
+ context_feature,
455
+ *vision_latents_attention_mask_list,
456
+ ) -> torch.FloatTensor:
457
+
458
+ residual = queries
459
+ # queries = self.proj_in(queries)
460
+ context_feature = self.proj_context(context_feature)
461
+ # queries = queries + context_feature
462
+ queries = torch.cat([queries, context_feature], -1)
463
+
464
+ if self.num_of_kvs > 1:
465
+ combination_weight = self.weight_mlp(queries).softmax(
466
+ -1
467
+ ) # B * 1 * num_tower
468
+ combination_weight = combination_weight.unsqueeze(-1)
469
+ else:
470
+ combination_weight = 1
471
+
472
+ queries = self.proj_in(queries)
473
+
474
+ vision_latents_list = vision_latents_attention_mask_list[: self.num_of_kvs]
475
+ attention_mask_list = vision_latents_attention_mask_list[self.num_of_kvs :]
476
+
477
+ attention_mask_list_reshaped = []
478
+ if attention_mask_list is not None:
479
+ for attention_mask in attention_mask_list:
480
+ attention_mask = attention_mask.view(attention_mask.shape[0], 1, 1, -1)
481
+ attention_mask = attention_mask.expand(-1, -1, queries.shape[1], -1)
482
+ attention_mask_list_reshaped.append(attention_mask)
483
+
484
+ vision_latents_pos_list = []
485
+ for i, vision_latents in enumerate(vision_latents_list):
486
+ if vision_latents.shape[1] > 1:
487
+ vision_latents_pos_list.append(
488
+ vision_latents
489
+ + getattr(self, "pos_embed_{}".format(i))[None, :, :].to(
490
+ vision_latents.dtype
491
+ )
492
+ )
493
+ else:
494
+ vision_latents_pos_list.append(vision_latents)
495
+
496
+ aggregated_vision_latents_list = []
497
+ for i, (vision_latents, attention_mask) in enumerate(
498
+ zip(vision_latents_pos_list, attention_mask_list_reshaped)
499
+ ):
500
+ aggregated_vision_latents_list.append(
501
+ getattr(self, "aggregate_{}".format(i))(
502
+ vision_latents, queries, attention_mask
503
+ )
504
+ )
505
+
506
+ aggregated_vision_latents = torch.stack(aggregated_vision_latents_list, 2)
507
+
508
+ queries = queries + (aggregated_vision_latents * combination_weight).sum(2)
509
+
510
+ queries = self.norm(queries)
511
+
512
+ queries = self.proj_out(queries)
513
+
514
+ queries = queries + residual
515
+
516
+ return queries
517
+
518
+
519
+ class VisionTokenSampler(nn.Module):
520
+ def __init__(
521
+ self,
522
+ q_dim,
523
+ context_dim,
524
+ kv_dim_list,
525
+ kv_size_list,
526
+ vision_hidden_size,
527
+ num_of_layers=1,
528
+ layer_type="joint",
529
+ ):
530
+ super().__init__()
531
+ assert layer_type in ["joint", "sep"]
532
+ if layer_type == "joint":
533
+ self.layers = nn.ModuleList(
534
+ [
535
+ VisionCrossAttentionLayer(
536
+ q_dim,
537
+ context_dim,
538
+ kv_dim_list,
539
+ kv_size_list,
540
+ vision_hidden_size,
541
+ idx,
542
+ )
543
+ for idx in range(num_of_layers)
544
+ ]
545
+ )
546
+ else:
547
+ self.layers = nn.ModuleList(
548
+ [
549
+ VisionAggregationLayer(
550
+ q_dim,
551
+ context_dim,
552
+ kv_dim_list,
553
+ kv_size_list,
554
+ vision_hidden_size,
555
+ idx,
556
+ )
557
+ for idx in range(num_of_layers)
558
+ ]
559
+ )
560
+
561
+ def forward(self, queries, context_feature, *vision_latents_attention_mask_list):
562
+ for layer in self.layers:
563
+ queries = layer(
564
+ queries, context_feature, *vision_latents_attention_mask_list
565
+ )
566
+ return queries
vocab.json ADDED
The diff for this file is too large to render. See raw diff