VidToMe / controlnet_utils.py
jadechoghari's picture
Create controlnet_utils.py
7b5beb5 verified
import torch.nn.functional as F
# from PyQt5.QtCore import QLibraryInfo
import cv2
import os
import torch
import torchvision.transforms as T
# os.environ["QT_QPA_PLATFORM_PLUGIN_PATH"] = QLibraryInfo.location(
# QLibraryInfo.PluginsPath
# )
# os.environ["QT_QPA_PLATFORM_PLUGIN_PATH"] = "/home/lixirui/anaconda3/envs/dfwebui/lib/python3.9/site-packages/PyQt5/Qt5/plugins"
from controlnet_aux.processor import Processor
import transformers
import numpy as np
from diffusers.utils import load_image
CONTROLNET_DICT = {
"tile": "lllyasviel/control_v11f1e_sd15_tile",
"ip2p": "lllyasviel/control_v11e_sd15_ip2p",
"openpose": "lllyasviel/control_v11p_sd15_openpose",
"softedge": "lllyasviel/control_v11p_sd15_softedge",
"depth": "lllyasviel/control_v11f1p_sd15_depth",
"lineart_anime": "lllyasviel/control_v11p_sd15s2_lineart_anime",
"canny": "lllyasviel/control_v11p_sd15_canny"
}
processor_cache = dict()
def process(image, processor_id):
process_ls = []
H, W = image.shape[2:]
if processor_id in processor_cache:
processor = processor_cache[processor_id]
else:
processor = Processor(processor_id, {"output_type": "numpy"})
processor_cache[processor_id] = processor
for img in image:
img = img.clone().cpu().permute(1,2,0) * 255
processed_image = processor(img)
processed_image = cv2.resize(processed_image, (W, H), interpolation=cv2.INTER_LINEAR)
processed_image = torch.tensor(processed_image).to(image).permute(2,0,1) / 255
process_ls.append(processed_image)
processed_image = torch.stack(process_ls)
return processed_image
def tile_preprocess(image, resample_rate = 1.0, **kwargs):
cond_image = F.interpolate(image, scale_factor=resample_rate, mode="bilinear")
cond_image = F.interpolate(cond_image, scale_factor=1 / resample_rate)
return cond_image
def ip2p_prepreocess(image, **kwargs):
return image
def openpose_prepreocess(image, **kwargs):
processor_id = 'openpose'
return process(image, processor_id)
def softedge_prepreocess(image, proc = "pidsafe", **kwargs):
processor_id = f'softedge_{proc}'
return process(image, processor_id)
def depth_prepreocess(image, **kwargs):
image_ls = []
for img in image:
image_ls.append(T.ToPILImage()(img))
depth_estimator = transformers.pipeline('depth-estimation')
ret = depth_estimator(image_ls)
depth_ls = []
for r in ret:
depth_ls.append(T.ToTensor()(r['depth']))
depth = torch.cat(depth_ls)
depth = torch.stack([depth, depth, depth], axis=1)
return depth
def lineart_anime_prepreocess(image, proc = "anime",**kwargs):
processor_id = f'lineart_{proc}'
return process(image, processor_id)
def canny_preprocess(image, **kwargs):
processor_id = f'canny'
return process(image, processor_id)
PREPROCESS_DICT = {
"tile": tile_preprocess,
"ip2p": ip2p_prepreocess,
"openpose": openpose_prepreocess,
"softedge": softedge_prepreocess,
"depth": depth_prepreocess,
"lineart_anime": lineart_anime_prepreocess,
"canny": canny_preprocess
}
def control_preprocess(images, control_type, **kwargs):
return PREPROCESS_DICT[control_type](images, **kwargs)
def empty_cache():
global processor_cache
processor_cache = dict()
torch.cuda.empty_cache()