--- license: mit pipeline_tag: text-to-video library_name: diffusers --- # VidToMe: Video Token Merging for Zero-Shot Video Editing Edit videos instantly with just a prompt! 🎥 Diffusers Implementation of VidToMe is a diffusion-based pipeline for zero-shot video editing that enhances temporal consistency and reduces memory usage by merging self-attention tokens across video frames. This approach allows for a harmonious video generation and editing without needing to fine-tune the model. By aligning and compressing redundant tokens across frames, VidToMe ensures smooth transitions and coherent video output, improving over traditional video editing methods. It follows by [this paper](https://arxiv.org/abs/2312.10656). ## Usage ```python from diffusers import DiffusionPipeline # load the pretrained model pipeline = DiffusionPipeline.from_pretrained("jadechoghari/VidToMe", trust_remote_code=True, custom_pipeline="jadechoghari/VidToMe", sd_version="depth", device="cuda", float_precision="fp16") # Edit a video with prompts pipeline( video_path="path/to/video.mp4", video_prompt="A serene beach scene", edit_prompt="Make the sunset more vibrant", control_type="depth", n_timesteps=50 ) ``` ## Applications: - Zero-shot video editing for content creators - Video transformation using natural language prompts - Memory-optimized video generation for longer or complex sequences **Model Authors:** - Xirui Li - Chao Ma - Xiaokang Yang - Ming-Hsuan Yang For more check the [Github Repo](https://github.com/lixirui142/VidToMe).