|
|
|
|
|
|
|
|
|
""" |
|
ein notation: |
|
b - batch |
|
n - sequence |
|
nt - text sequence |
|
nw - raw wave length |
|
d - dimension |
|
""" |
|
|
|
|
|
from __future__ import annotations |
|
from typing import Dict, Any, Optional |
|
from functools import partial |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import Module, ModuleList, Sequential, Linear |
|
import torch.nn.functional as F |
|
|
|
from torchdiffeq import odeint |
|
from einops.layers.torch import Rearrange |
|
from einops import rearrange, repeat, pack, unpack |
|
from x_transformers import Attention, FeedForward, RMSNorm, AdaptiveRMSNorm |
|
from x_transformers.x_transformers import RotaryEmbedding |
|
from gateloop_transformer import SimpleGateLoopLayer |
|
|
|
from tensor_typing import Float |
|
|
|
class Identity(Module): |
|
def forward(self, x, **kwargs): |
|
return x |
|
|
|
class AdaLNZero(Module): |
|
def __init__(self, dim: int, dim_condition: Optional[int] = None, init_bias_value: float = -2.): |
|
super().__init__() |
|
dim_condition = dim_condition or dim |
|
self.to_gamma = nn.Linear(dim_condition, dim) |
|
nn.init.zeros_(self.to_gamma.weight) |
|
nn.init.constant_(self.to_gamma.bias, init_bias_value) |
|
|
|
def forward(self, x: torch.Tensor, *, condition: torch.Tensor) -> torch.Tensor: |
|
if condition.ndim == 2: |
|
condition = rearrange(condition, 'b d -> b 1 d') |
|
gamma = self.to_gamma(condition).sigmoid() |
|
return x * gamma |
|
|
|
def exists(v: Any) -> bool: |
|
return v is not None |
|
|
|
def default(v: Any, d: Any) -> Any: |
|
return v if exists(v) else d |
|
|
|
def divisible_by(num: int, den: int) -> bool: |
|
return (num % den) == 0 |
|
|
|
class Transformer(Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim: int, |
|
depth: int = 8, |
|
cond_on_time: bool = True, |
|
skip_connect_type: str = 'concat', |
|
abs_pos_emb: bool = True, |
|
max_seq_len: int = 8192, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
num_gateloop_layers: int = 1, |
|
dropout: float = 0.1, |
|
num_registers: int = 32, |
|
attn_kwargs: Dict[str, Any] = dict(gate_value_heads=True, softclamp_logits=True), |
|
ff_kwargs: Dict[str, Any] = dict() |
|
): |
|
super().__init__() |
|
assert divisible_by(depth, 2), 'depth needs to be even' |
|
|
|
self.max_seq_len = max_seq_len |
|
self.abs_pos_emb = nn.Embedding(max_seq_len, dim) if abs_pos_emb else None |
|
self.dim = dim |
|
self.skip_connect_type = skip_connect_type |
|
needs_skip_proj = skip_connect_type == 'concat' |
|
self.depth = depth |
|
self.layers = ModuleList([]) |
|
|
|
self.num_registers = num_registers |
|
self.registers = nn.Parameter(torch.zeros(num_registers, dim)) |
|
nn.init.normal_(self.registers, std=0.02) |
|
|
|
self.rotary_emb = RotaryEmbedding(dim_head) |
|
self.cond_on_time = cond_on_time |
|
rmsnorm_klass = AdaptiveRMSNorm if cond_on_time else RMSNorm |
|
postbranch_klass = partial(AdaLNZero, dim=dim) if cond_on_time else Identity |
|
|
|
self.time_cond_mlp = Sequential( |
|
Rearrange('... -> ... 1'), |
|
Linear(1, dim), |
|
nn.SiLU() |
|
) if cond_on_time else nn.Identity() |
|
|
|
for ind in range(depth): |
|
is_later_half = ind >= (depth // 2) |
|
gateloop = SimpleGateLoopLayer(dim=dim) |
|
attn_norm = rmsnorm_klass(dim) |
|
attn = Attention(dim=dim, heads=heads, dim_head=dim_head, dropout=dropout, **attn_kwargs) |
|
attn_adaln_zero = postbranch_klass() |
|
ff_norm = rmsnorm_klass(dim) |
|
ff = FeedForward(dim=dim, glu=True, dropout=dropout, **ff_kwargs) |
|
ff_adaln_zero = postbranch_klass() |
|
skip_proj = Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None |
|
|
|
self.layers.append(ModuleList([ |
|
gateloop, skip_proj, attn_norm, attn, attn_adaln_zero, |
|
ff_norm, ff, ff_adaln_zero |
|
])) |
|
|
|
self.final_norm = RMSNorm(dim) |
|
|
|
def forward( |
|
self, |
|
x: Float['b n d'], |
|
times: Optional[Float['b'] | Float['']] = None, |
|
) -> torch.Tensor: |
|
batch, seq_len, device = *x.shape[:2], x.device |
|
|
|
assert not (exists(times) ^ self.cond_on_time), '`times` must be passed in if `cond_on_time` is set to `True` and vice versa' |
|
|
|
norm_kwargs = {} |
|
|
|
if exists(self.abs_pos_emb): |
|
|
|
seq = torch.arange(seq_len, device=device) |
|
x = x + self.abs_pos_emb(seq) |
|
|
|
if exists(times): |
|
if times.ndim == 0: |
|
times = repeat(times, ' -> b', b=batch) |
|
times = self.time_cond_mlp(times) |
|
norm_kwargs['condition'] = times |
|
|
|
registers = repeat(self.registers, 'r d -> b r d', b=batch) |
|
x, registers_packed_shape = pack((registers, x), 'b * d') |
|
|
|
rotary_pos_emb = self.rotary_emb.forward_from_seq_len(x.shape[-2]) |
|
|
|
skips = [] |
|
|
|
for ind, ( |
|
gateloop, maybe_skip_proj, attn_norm, attn, maybe_attn_adaln_zero, |
|
ff_norm, ff, maybe_ff_adaln_zero |
|
) in enumerate(self.layers): |
|
layer = ind + 1 |
|
is_first_half = layer <= (self.depth // 2) |
|
|
|
if is_first_half: |
|
skips.append(x) |
|
else: |
|
skip = skips.pop() |
|
if self.skip_connect_type == 'concat': |
|
x = torch.cat((x, skip), dim=-1) |
|
x = maybe_skip_proj(x) |
|
|
|
x = gateloop(x) + x |
|
|
|
attn_out = attn(attn_norm(x, **norm_kwargs), rotary_pos_emb=rotary_pos_emb) |
|
x = x + maybe_attn_adaln_zero(attn_out, **norm_kwargs) |
|
|
|
ff_out = ff(ff_norm(x, **norm_kwargs)) |
|
x = x + maybe_ff_adaln_zero(ff_out, **norm_kwargs) |
|
|
|
assert len(skips) == 0 |
|
|
|
_, x = unpack(x, registers_packed_shape, 'b * d') |
|
|
|
return self.final_norm(x) |
|
|
|
class VoiceRestore(nn.Module): |
|
def __init__( |
|
self, |
|
sigma: float = 0.0, |
|
transformer: Optional[Dict[str, Any]] = None, |
|
odeint_kwargs: Optional[Dict[str, Any]] = None, |
|
num_channels: int = 100, |
|
): |
|
super().__init__() |
|
self.sigma = sigma |
|
self.num_channels = num_channels |
|
|
|
self.transformer = Transformer(**transformer, cond_on_time=True) |
|
|
|
self.odeint_kwargs = odeint_kwargs or {'atol': 1e-5, 'rtol': 1e-5, 'method': 'midpoint'} |
|
|
|
self.proj_in = nn.Linear(num_channels, self.transformer.dim) |
|
self.cond_proj = nn.Linear(num_channels, self.transformer.dim) |
|
self.to_pred = nn.Linear(self.transformer.dim, num_channels) |
|
|
|
def transformer_with_pred_head(self, x: torch.Tensor, times: torch.Tensor, cond: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
x = self.proj_in(x) |
|
if cond is not None: |
|
cond_proj = self.cond_proj(cond) |
|
x = x + cond_proj |
|
attended = self.transformer(x, times=times) |
|
return self.to_pred(attended) |
|
|
|
def cfg_transformer_with_pred_head( |
|
self, |
|
*args, |
|
cond=None, |
|
mask=None, |
|
cfg_strength: float = 0.5, |
|
**kwargs, |
|
): |
|
pred = self.transformer_with_pred_head(*args, **kwargs, cond=cond) |
|
|
|
if cfg_strength < 1e-5: |
|
return pred * mask.unsqueeze(-1) if mask is not None else pred |
|
|
|
null_pred = self.transformer_with_pred_head(*args, **kwargs, cond=None) |
|
|
|
result = pred + (pred - null_pred) * cfg_strength |
|
return result * mask.unsqueeze(-1) if mask is not None else result |
|
|
|
|
|
@torch.no_grad() |
|
def sample(self, processed: torch.Tensor, steps: int = 32, cfg_strength: float = 0.5) -> torch.Tensor: |
|
self.eval() |
|
times = torch.linspace(0, 1, steps, device=processed.device) |
|
|
|
def ode_fn(t: torch.Tensor, x: torch.Tensor) -> torch.Tensor: |
|
return self.cfg_transformer_with_pred_head(x, times=t, cond=processed, cfg_strength=cfg_strength) |
|
|
|
y0 = torch.randn_like(processed) |
|
trajectory = odeint(ode_fn, y0, times, **self.odeint_kwargs) |
|
restored = trajectory[-1] |
|
return restored |