|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from torch.nn import Conv2d |
|
from torch.nn.utils import weight_norm, spectral_norm |
|
from torchaudio.transforms import Spectrogram, Resample |
|
|
|
from env import AttrDict |
|
from utils import get_padding |
|
import typing |
|
from typing import Optional, List, Union, Dict, Tuple |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__( |
|
self, |
|
h: AttrDict, |
|
period: List[int], |
|
kernel_size: int = 5, |
|
stride: int = 3, |
|
use_spectral_norm: bool = False, |
|
): |
|
super().__init__() |
|
self.period = period |
|
self.d_mult = h.discriminator_channel_mult |
|
norm_f = weight_norm if not use_spectral_norm else spectral_norm |
|
|
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f( |
|
Conv2d( |
|
1, |
|
int(32 * self.d_mult), |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(5, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
int(32 * self.d_mult), |
|
int(128 * self.d_mult), |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(5, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
int(128 * self.d_mult), |
|
int(512 * self.d_mult), |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(5, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
int(512 * self.d_mult), |
|
int(1024 * self.d_mult), |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(5, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
int(1024 * self.d_mult), |
|
int(1024 * self.d_mult), |
|
(kernel_size, 1), |
|
1, |
|
padding=(2, 0), |
|
) |
|
), |
|
] |
|
) |
|
self.conv_post = norm_f( |
|
Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0)) |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, 0.1) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
def __init__(self, h: AttrDict): |
|
super().__init__() |
|
self.mpd_reshapes = h.mpd_reshapes |
|
print(f"mpd_reshapes: {self.mpd_reshapes}") |
|
self.discriminators = nn.ModuleList( |
|
[ |
|
DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) |
|
for rs in self.mpd_reshapes |
|
] |
|
) |
|
|
|
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ |
|
List[torch.Tensor], |
|
List[torch.Tensor], |
|
List[List[torch.Tensor]], |
|
List[List[torch.Tensor]], |
|
]: |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorR(nn.Module): |
|
def __init__(self, cfg: AttrDict, resolution: List[List[int]]): |
|
super().__init__() |
|
|
|
self.resolution = resolution |
|
assert ( |
|
len(self.resolution) == 3 |
|
), f"MRD layer requires list with len=3, got {self.resolution}" |
|
self.lrelu_slope = 0.1 |
|
|
|
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm |
|
if hasattr(cfg, "mrd_use_spectral_norm"): |
|
print( |
|
f"[INFO] overriding MRD use_spectral_norm as {cfg.mrd_use_spectral_norm}" |
|
) |
|
norm_f = ( |
|
weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm |
|
) |
|
self.d_mult = cfg.discriminator_channel_mult |
|
if hasattr(cfg, "mrd_channel_mult"): |
|
print(f"[INFO] overriding mrd channel multiplier as {cfg.mrd_channel_mult}") |
|
self.d_mult = cfg.mrd_channel_mult |
|
|
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f(nn.Conv2d(1, int(32 * self.d_mult), (3, 9), padding=(1, 4))), |
|
norm_f( |
|
nn.Conv2d( |
|
int(32 * self.d_mult), |
|
int(32 * self.d_mult), |
|
(3, 9), |
|
stride=(1, 2), |
|
padding=(1, 4), |
|
) |
|
), |
|
norm_f( |
|
nn.Conv2d( |
|
int(32 * self.d_mult), |
|
int(32 * self.d_mult), |
|
(3, 9), |
|
stride=(1, 2), |
|
padding=(1, 4), |
|
) |
|
), |
|
norm_f( |
|
nn.Conv2d( |
|
int(32 * self.d_mult), |
|
int(32 * self.d_mult), |
|
(3, 9), |
|
stride=(1, 2), |
|
padding=(1, 4), |
|
) |
|
), |
|
norm_f( |
|
nn.Conv2d( |
|
int(32 * self.d_mult), |
|
int(32 * self.d_mult), |
|
(3, 3), |
|
padding=(1, 1), |
|
) |
|
), |
|
] |
|
) |
|
self.conv_post = norm_f( |
|
nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)) |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
fmap = [] |
|
|
|
x = self.spectrogram(x) |
|
x = x.unsqueeze(1) |
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, self.lrelu_slope) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
def spectrogram(self, x: torch.Tensor) -> torch.Tensor: |
|
n_fft, hop_length, win_length = self.resolution |
|
x = F.pad( |
|
x, |
|
(int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), |
|
mode="reflect", |
|
) |
|
x = x.squeeze(1) |
|
x = torch.stft( |
|
x, |
|
n_fft=n_fft, |
|
hop_length=hop_length, |
|
win_length=win_length, |
|
center=False, |
|
return_complex=True, |
|
) |
|
x = torch.view_as_real(x) |
|
mag = torch.norm(x, p=2, dim=-1) |
|
|
|
return mag |
|
|
|
|
|
class MultiResolutionDiscriminator(nn.Module): |
|
def __init__(self, cfg, debug=False): |
|
super().__init__() |
|
self.resolutions = cfg.resolutions |
|
assert ( |
|
len(self.resolutions) == 3 |
|
), f"MRD requires list of list with len=3, each element having a list with len=3. Got {self.resolutions}" |
|
self.discriminators = nn.ModuleList( |
|
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions] |
|
) |
|
|
|
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ |
|
List[torch.Tensor], |
|
List[torch.Tensor], |
|
List[List[torch.Tensor]], |
|
List[List[torch.Tensor]], |
|
]: |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(x=y) |
|
y_d_g, fmap_g = d(x=y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
|
|
|
|
|
|
class DiscriminatorB(nn.Module): |
|
def __init__( |
|
self, |
|
window_length: int, |
|
channels: int = 32, |
|
hop_factor: float = 0.25, |
|
bands: Tuple[Tuple[float, float], ...] = ( |
|
(0.0, 0.1), |
|
(0.1, 0.25), |
|
(0.25, 0.5), |
|
(0.5, 0.75), |
|
(0.75, 1.0), |
|
), |
|
): |
|
super().__init__() |
|
self.window_length = window_length |
|
self.hop_factor = hop_factor |
|
self.spec_fn = Spectrogram( |
|
n_fft=window_length, |
|
hop_length=int(window_length * hop_factor), |
|
win_length=window_length, |
|
power=None, |
|
) |
|
n_fft = window_length // 2 + 1 |
|
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] |
|
self.bands = bands |
|
convs = lambda: nn.ModuleList( |
|
[ |
|
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), |
|
weight_norm( |
|
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) |
|
), |
|
weight_norm( |
|
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) |
|
), |
|
weight_norm( |
|
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) |
|
), |
|
weight_norm( |
|
nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1)) |
|
), |
|
] |
|
) |
|
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) |
|
|
|
self.conv_post = weight_norm( |
|
nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)) |
|
) |
|
|
|
def spectrogram(self, x: torch.Tensor) -> List[torch.Tensor]: |
|
|
|
x = x - x.mean(dim=-1, keepdims=True) |
|
|
|
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) |
|
x = self.spec_fn(x) |
|
x = torch.view_as_real(x) |
|
x = x.permute(0, 3, 2, 1) |
|
|
|
x_bands = [x[..., b[0] : b[1]] for b in self.bands] |
|
return x_bands |
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
x_bands = self.spectrogram(x.squeeze(1)) |
|
fmap = [] |
|
x = [] |
|
|
|
for band, stack in zip(x_bands, self.band_convs): |
|
for i, layer in enumerate(stack): |
|
band = layer(band) |
|
band = torch.nn.functional.leaky_relu(band, 0.1) |
|
if i > 0: |
|
fmap.append(band) |
|
x.append(band) |
|
|
|
x = torch.cat(x, dim=-1) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
|
|
return x, fmap |
|
|
|
|
|
|
|
|
|
|
|
class MultiBandDiscriminator(nn.Module): |
|
def __init__( |
|
self, |
|
h, |
|
): |
|
""" |
|
Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec. |
|
and the modified code adapted from https://github.com/gemelo-ai/vocos. |
|
""" |
|
super().__init__() |
|
|
|
self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512]) |
|
self.discriminators = nn.ModuleList( |
|
[DiscriminatorB(window_length=w) for w in self.fft_sizes] |
|
) |
|
|
|
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ |
|
List[torch.Tensor], |
|
List[torch.Tensor], |
|
List[List[torch.Tensor]], |
|
List[List[torch.Tensor]], |
|
]: |
|
|
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for d in self.discriminators: |
|
y_d_r, fmap_r = d(x=y) |
|
y_d_g, fmap_g = d(x=y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
|
|
|
|
class DiscriminatorCQT(nn.Module): |
|
def __init__(self, cfg: AttrDict, hop_length: int, n_octaves:int, bins_per_octave: int): |
|
super().__init__() |
|
self.cfg = cfg |
|
|
|
self.filters = cfg["cqtd_filters"] |
|
self.max_filters = cfg["cqtd_max_filters"] |
|
self.filters_scale = cfg["cqtd_filters_scale"] |
|
self.kernel_size = (3, 9) |
|
self.dilations = cfg["cqtd_dilations"] |
|
self.stride = (1, 2) |
|
|
|
self.in_channels = cfg["cqtd_in_channels"] |
|
self.out_channels = cfg["cqtd_out_channels"] |
|
self.fs = cfg["sampling_rate"] |
|
self.hop_length = hop_length |
|
self.n_octaves = n_octaves |
|
self.bins_per_octave = bins_per_octave |
|
|
|
|
|
from nnAudio import features |
|
|
|
self.cqt_transform = features.cqt.CQT2010v2( |
|
sr=self.fs * 2, |
|
hop_length=self.hop_length, |
|
n_bins=self.bins_per_octave * self.n_octaves, |
|
bins_per_octave=self.bins_per_octave, |
|
output_format="Complex", |
|
pad_mode="constant", |
|
) |
|
|
|
self.conv_pres = nn.ModuleList() |
|
for _ in range(self.n_octaves): |
|
self.conv_pres.append( |
|
nn.Conv2d( |
|
self.in_channels * 2, |
|
self.in_channels * 2, |
|
kernel_size=self.kernel_size, |
|
padding=self.get_2d_padding(self.kernel_size), |
|
) |
|
) |
|
|
|
self.convs = nn.ModuleList() |
|
|
|
self.convs.append( |
|
nn.Conv2d( |
|
self.in_channels * 2, |
|
self.filters, |
|
kernel_size=self.kernel_size, |
|
padding=self.get_2d_padding(self.kernel_size), |
|
) |
|
) |
|
|
|
in_chs = min(self.filters_scale * self.filters, self.max_filters) |
|
for i, dilation in enumerate(self.dilations): |
|
out_chs = min( |
|
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters |
|
) |
|
self.convs.append( |
|
weight_norm( |
|
nn.Conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=self.kernel_size, |
|
stride=self.stride, |
|
dilation=(dilation, 1), |
|
padding=self.get_2d_padding(self.kernel_size, (dilation, 1)), |
|
) |
|
) |
|
) |
|
in_chs = out_chs |
|
out_chs = min( |
|
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters, |
|
self.max_filters, |
|
) |
|
self.convs.append( |
|
weight_norm( |
|
nn.Conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=(self.kernel_size[0], self.kernel_size[0]), |
|
padding=self.get_2d_padding( |
|
(self.kernel_size[0], self.kernel_size[0]) |
|
), |
|
) |
|
) |
|
) |
|
|
|
self.conv_post = weight_norm( |
|
nn.Conv2d( |
|
out_chs, |
|
self.out_channels, |
|
kernel_size=(self.kernel_size[0], self.kernel_size[0]), |
|
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])), |
|
) |
|
) |
|
|
|
self.activation = torch.nn.LeakyReLU(negative_slope=0.1) |
|
self.resample = Resample(orig_freq=self.fs, new_freq=self.fs * 2) |
|
|
|
self.cqtd_normalize_volume = self.cfg.get("cqtd_normalize_volume", False) |
|
if self.cqtd_normalize_volume: |
|
print( |
|
f"[INFO] cqtd_normalize_volume set to True. Will apply DC offset removal & peak volume normalization in CQTD!" |
|
) |
|
|
|
def get_2d_padding( |
|
self, |
|
kernel_size: typing.Tuple[int, int], |
|
dilation: typing.Tuple[int, int] = (1, 1), |
|
): |
|
return ( |
|
((kernel_size[0] - 1) * dilation[0]) // 2, |
|
((kernel_size[1] - 1) * dilation[1]) // 2, |
|
) |
|
|
|
def forward(self, x: torch.tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
fmap = [] |
|
|
|
if self.cqtd_normalize_volume: |
|
|
|
x = x - x.mean(dim=-1, keepdims=True) |
|
|
|
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) |
|
|
|
x = self.resample(x) |
|
|
|
z = self.cqt_transform(x) |
|
|
|
z_amplitude = z[:, :, :, 0].unsqueeze(1) |
|
z_phase = z[:, :, :, 1].unsqueeze(1) |
|
|
|
z = torch.cat([z_amplitude, z_phase], dim=1) |
|
z = torch.permute(z, (0, 1, 3, 2)) |
|
|
|
latent_z = [] |
|
for i in range(self.n_octaves): |
|
latent_z.append( |
|
self.conv_pres[i]( |
|
z[ |
|
:, |
|
:, |
|
:, |
|
i * self.bins_per_octave : (i + 1) * self.bins_per_octave, |
|
] |
|
) |
|
) |
|
latent_z = torch.cat(latent_z, dim=-1) |
|
|
|
for i, l in enumerate(self.convs): |
|
latent_z = l(latent_z) |
|
|
|
latent_z = self.activation(latent_z) |
|
fmap.append(latent_z) |
|
|
|
latent_z = self.conv_post(latent_z) |
|
|
|
return latent_z, fmap |
|
|
|
|
|
class MultiScaleSubbandCQTDiscriminator(nn.Module): |
|
def __init__(self, cfg: AttrDict): |
|
super().__init__() |
|
|
|
self.cfg = cfg |
|
|
|
self.cfg["cqtd_filters"] = self.cfg.get("cqtd_filters", 32) |
|
self.cfg["cqtd_max_filters"] = self.cfg.get("cqtd_max_filters", 1024) |
|
self.cfg["cqtd_filters_scale"] = self.cfg.get("cqtd_filters_scale", 1) |
|
self.cfg["cqtd_dilations"] = self.cfg.get("cqtd_dilations", [1, 2, 4]) |
|
self.cfg["cqtd_in_channels"] = self.cfg.get("cqtd_in_channels", 1) |
|
self.cfg["cqtd_out_channels"] = self.cfg.get("cqtd_out_channels", 1) |
|
|
|
self.cfg["cqtd_hop_lengths"] = self.cfg.get("cqtd_hop_lengths", [512, 256, 256]) |
|
self.cfg["cqtd_n_octaves"] = self.cfg.get("cqtd_n_octaves", [9, 9, 9]) |
|
self.cfg["cqtd_bins_per_octaves"] = self.cfg.get( |
|
"cqtd_bins_per_octaves", [24, 36, 48] |
|
) |
|
|
|
self.discriminators = nn.ModuleList( |
|
[ |
|
DiscriminatorCQT( |
|
self.cfg, |
|
hop_length=self.cfg["cqtd_hop_lengths"][i], |
|
n_octaves=self.cfg["cqtd_n_octaves"][i], |
|
bins_per_octave=self.cfg["cqtd_bins_per_octaves"][i], |
|
) |
|
for i in range(len(self.cfg["cqtd_hop_lengths"])) |
|
] |
|
) |
|
|
|
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ |
|
List[torch.Tensor], |
|
List[torch.Tensor], |
|
List[List[torch.Tensor]], |
|
List[List[torch.Tensor]], |
|
]: |
|
|
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for disc in self.discriminators: |
|
y_d_r, fmap_r = disc(y) |
|
y_d_g, fmap_g = disc(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class CombinedDiscriminator(nn.Module): |
|
""" |
|
Wrapper of chaining multiple discrimiantor architectures. |
|
Example: combine mbd and cqtd as a single class |
|
""" |
|
|
|
def __init__(self, list_discriminator: List[nn.Module]): |
|
super().__init__() |
|
self.discrimiantor = nn.ModuleList(list_discriminator) |
|
|
|
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ |
|
List[torch.Tensor], |
|
List[torch.Tensor], |
|
List[List[torch.Tensor]], |
|
List[List[torch.Tensor]], |
|
]: |
|
|
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for disc in self.discrimiantor: |
|
y_d_r, y_d_g, fmap_r, fmap_g = disc(y, y_hat) |
|
y_d_rs.extend(y_d_r) |
|
fmap_rs.extend(fmap_r) |
|
y_d_gs.extend(y_d_g) |
|
fmap_gs.extend(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|