|
|
|
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals |
|
|
|
import os |
|
import argparse |
|
import json |
|
import torch |
|
import librosa |
|
from utils import load_checkpoint |
|
from meldataset import get_mel_spectrogram |
|
from scipy.io.wavfile import write |
|
from env import AttrDict |
|
from meldataset import MAX_WAV_VALUE |
|
from bigvgan import BigVGAN as Generator |
|
|
|
h = None |
|
device = None |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
def inference(a, h): |
|
generator = Generator(h, use_cuda_kernel=a.use_cuda_kernel).to(device) |
|
|
|
state_dict_g = load_checkpoint(a.checkpoint_file, device) |
|
generator.load_state_dict(state_dict_g["generator"]) |
|
|
|
filelist = os.listdir(a.input_wavs_dir) |
|
|
|
os.makedirs(a.output_dir, exist_ok=True) |
|
|
|
generator.eval() |
|
generator.remove_weight_norm() |
|
with torch.no_grad(): |
|
for i, filname in enumerate(filelist): |
|
|
|
wav, sr = librosa.load( |
|
os.path.join(a.input_wavs_dir, filname), sr=h.sampling_rate, mono=True |
|
) |
|
wav = torch.FloatTensor(wav).to(device) |
|
|
|
x = get_mel_spectrogram(wav.unsqueeze(0), generator.h) |
|
|
|
y_g_hat = generator(x) |
|
|
|
audio = y_g_hat.squeeze() |
|
audio = audio * MAX_WAV_VALUE |
|
audio = audio.cpu().numpy().astype("int16") |
|
|
|
output_file = os.path.join( |
|
a.output_dir, os.path.splitext(filname)[0] + "_generated.wav" |
|
) |
|
write(output_file, h.sampling_rate, audio) |
|
print(output_file) |
|
|
|
|
|
def main(): |
|
print("Initializing Inference Process..") |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--input_wavs_dir", default="test_files") |
|
parser.add_argument("--output_dir", default="generated_files") |
|
parser.add_argument("--checkpoint_file", required=True) |
|
parser.add_argument("--use_cuda_kernel", action="store_true", default=False) |
|
|
|
a = parser.parse_args() |
|
|
|
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], "config.json") |
|
with open(config_file) as f: |
|
data = f.read() |
|
|
|
global h |
|
json_config = json.loads(data) |
|
h = AttrDict(json_config) |
|
|
|
torch.manual_seed(h.seed) |
|
global device |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed(h.seed) |
|
device = torch.device("cuda") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
inference(a, h) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|