jadechoghari's picture
add initial files
96e64e9 verified
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
import torch.nn.functional as F
import torch.nn as nn
from librosa.filters import mel as librosa_mel_fn
from scipy import signal
import typing
from typing import Optional, List, Union, Dict, Tuple
from collections import namedtuple
import math
import functools
# Adapted from https://github.com/descriptinc/descript-audio-codec/blob/main/dac/nn/loss.py under the MIT license.
# LICENSE is in incl_licenses directory.
class MultiScaleMelSpectrogramLoss(nn.Module):
"""Compute distance between mel spectrograms. Can be used
in a multi-scale way.
Parameters
----------
n_mels : List[int]
Number of mels per STFT, by default [5, 10, 20, 40, 80, 160, 320],
window_lengths : List[int], optional
Length of each window of each STFT, by default [32, 64, 128, 256, 512, 1024, 2048]
loss_fn : typing.Callable, optional
How to compare each loss, by default nn.L1Loss()
clamp_eps : float, optional
Clamp on the log magnitude, below, by default 1e-5
mag_weight : float, optional
Weight of raw magnitude portion of loss, by default 0.0 (no ampliciation on mag part)
log_weight : float, optional
Weight of log magnitude portion of loss, by default 1.0
pow : float, optional
Power to raise magnitude to before taking log, by default 1.0
weight : float, optional
Weight of this loss, by default 1.0
match_stride : bool, optional
Whether to match the stride of convolutional layers, by default False
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
Additional code copied and modified from https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py
"""
def __init__(
self,
sampling_rate: int,
n_mels: List[int] = [5, 10, 20, 40, 80, 160, 320],
window_lengths: List[int] = [32, 64, 128, 256, 512, 1024, 2048],
loss_fn: typing.Callable = nn.L1Loss(),
clamp_eps: float = 1e-5,
mag_weight: float = 0.0,
log_weight: float = 1.0,
pow: float = 1.0,
weight: float = 1.0,
match_stride: bool = False,
mel_fmin: List[float] = [0, 0, 0, 0, 0, 0, 0],
mel_fmax: List[float] = [None, None, None, None, None, None, None],
window_type: str = "hann",
):
super().__init__()
self.sampling_rate = sampling_rate
STFTParams = namedtuple(
"STFTParams",
["window_length", "hop_length", "window_type", "match_stride"],
)
self.stft_params = [
STFTParams(
window_length=w,
hop_length=w // 4,
match_stride=match_stride,
window_type=window_type,
)
for w in window_lengths
]
self.n_mels = n_mels
self.loss_fn = loss_fn
self.clamp_eps = clamp_eps
self.log_weight = log_weight
self.mag_weight = mag_weight
self.weight = weight
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.pow = pow
@staticmethod
@functools.lru_cache(None)
def get_window(
window_type,
window_length,
):
return signal.get_window(window_type, window_length)
@staticmethod
@functools.lru_cache(None)
def get_mel_filters(sr, n_fft, n_mels, fmin, fmax):
return librosa_mel_fn(sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
def mel_spectrogram(
self,
wav,
n_mels,
fmin,
fmax,
window_length,
hop_length,
match_stride,
window_type,
):
"""
Mirrors AudioSignal.mel_spectrogram used by BigVGAN-v2 training from:
https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py
"""
B, C, T = wav.shape
if match_stride:
assert (
hop_length == window_length // 4
), "For match_stride, hop must equal n_fft // 4"
right_pad = math.ceil(T / hop_length) * hop_length - T
pad = (window_length - hop_length) // 2
else:
right_pad = 0
pad = 0
wav = torch.nn.functional.pad(wav, (pad, pad + right_pad), mode="reflect")
window = self.get_window(window_type, window_length)
window = torch.from_numpy(window).to(wav.device).float()
stft = torch.stft(
wav.reshape(-1, T),
n_fft=window_length,
hop_length=hop_length,
window=window,
return_complex=True,
center=True,
)
_, nf, nt = stft.shape
stft = stft.reshape(B, C, nf, nt)
if match_stride:
"""
Drop first two and last two frames, which are added, because of padding. Now num_frames * hop_length = num_samples.
"""
stft = stft[..., 2:-2]
magnitude = torch.abs(stft)
nf = magnitude.shape[2]
mel_basis = self.get_mel_filters(
self.sampling_rate, 2 * (nf - 1), n_mels, fmin, fmax
)
mel_basis = torch.from_numpy(mel_basis).to(wav.device)
mel_spectrogram = magnitude.transpose(2, -1) @ mel_basis.T
mel_spectrogram = mel_spectrogram.transpose(-1, 2)
return mel_spectrogram
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
"""Computes mel loss between an estimate and a reference
signal.
Parameters
----------
x : torch.Tensor
Estimate signal
y : torch.Tensor
Reference signal
Returns
-------
torch.Tensor
Mel loss.
"""
loss = 0.0
for n_mels, fmin, fmax, s in zip(
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
):
kwargs = {
"n_mels": n_mels,
"fmin": fmin,
"fmax": fmax,
"window_length": s.window_length,
"hop_length": s.hop_length,
"match_stride": s.match_stride,
"window_type": s.window_type,
}
x_mels = self.mel_spectrogram(x, **kwargs)
y_mels = self.mel_spectrogram(y, **kwargs)
x_logmels = torch.log(
x_mels.clamp(min=self.clamp_eps).pow(self.pow)
) / torch.log(torch.tensor(10.0))
y_logmels = torch.log(
y_mels.clamp(min=self.clamp_eps).pow(self.pow)
) / torch.log(torch.tensor(10.0))
loss += self.log_weight * self.loss_fn(x_logmels, y_logmels)
loss += self.mag_weight * self.loss_fn(x_logmels, y_logmels)
return loss
# Loss functions
def feature_loss(
fmap_r: List[List[torch.Tensor]], fmap_g: List[List[torch.Tensor]]
) -> torch.Tensor:
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss * 2 # This equates to lambda=2.0 for the feature matching loss
def discriminator_loss(
disc_real_outputs: List[torch.Tensor], disc_generated_outputs: List[torch.Tensor]
) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]:
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg**2)
loss += r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(
disc_outputs: List[torch.Tensor],
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses