jadechoghari commited on
Commit
f34e6bf
1 Parent(s): e687074

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -42
README.md CHANGED
@@ -11,6 +11,25 @@ Demo of audio restorations: [VoiceRestore](https://sparkling-rabanadas-3082be.ne
11
 
12
  Credits: This repository is based on the [E2-TTS implementation by Lucidrains](https://github.com/lucidrains/e2-tts-pytorch)
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ## Example
15
  ### Degraded Input:
16
 
@@ -44,48 +63,6 @@ https://github.com/user-attachments/assets/fdbbb988-9bd2-4750-bddd-32bd5153d254
44
  - **Pretrained Model**: Includes a 301 million parameter transformer model with pre-trained weights. (Model is still in the process of training, there will be further checkpoint updates)
45
 
46
  ---
47
- ## Quick Start
48
-
49
- 1. Clone the repository:
50
- ```bash
51
- git clone --recurse-submodules https://github.com/skirdey/voicerestore.git
52
- cd VoiceRestore
53
- ```
54
-
55
- if you did not clone with `--recurse-submodules`, you can run:
56
- ```bash
57
- git submodule update --init --recursive
58
- ```
59
-
60
- 2. Install dependencies:
61
- ```bash
62
- pip install -r requirements.txt
63
- ```
64
-
65
- 3. Download the [pre-trained model](https://drive.google.com/drive/folders/1uBJNp4mrPJQY9WEaiTI9u09IsRg1lAPR?usp=sharing) and place it in the `checkpoints` folder.
66
-
67
- 4. Run a test restoration:
68
- ```bash
69
- python inference_short.py --checkpoint ./checkpoints/voice-restore-20d-16h-optim.pt --input test_input.wav --output test_output.wav --steps 32 --cfg_strength 0.5
70
- ```
71
- This will process `test_input.wav` and save the result as `test_output.wav`.
72
-
73
- 5. Run a long form restoration, it uses window chunking:
74
- ```bash
75
- python inference_long.py --checkpoint ./checkpoints/voice-restore-20d-16h-optim.pt --input test_input_long.wav --output test_output_long.wav --steps 32 --cfg_strength 0.5 --window_size_sec 10.0 --overlap 0.25
76
- ```
77
- This will process `test_input_long.wav` (you need to provide it) and save the result as `test_output_long.wav`.
78
-
79
- ## Usage
80
-
81
- To restore your own audio files:
82
-
83
- ```python
84
- from model import OptimizedAudioRestorationModel
85
-
86
- model = OptimizedAudioRestorationModel()
87
- restored_audio = model.forward(input_audio, steps=32, cfg_strength=0.5)
88
- ```
89
 
90
 
91
 
 
11
 
12
  Credits: This repository is based on the [E2-TTS implementation by Lucidrains](https://github.com/lucidrains/e2-tts-pytorch)
13
 
14
+ ## Usage
15
+ ``` bash
16
+ !git lfs install
17
+ !git clone https://huggingface.co/jadechoghari/VoiceRestore
18
+ %cd VoiceRestore
19
+ !pip install -r requirements.txt
20
+ ```
21
+
22
+ ``` python
23
+ from transformers import AutoModel
24
+ # path to the model folder (on colab it's as follows)
25
+ checkpoint_path = "/content/VoiceRestore"
26
+ model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True)
27
+ model("test_input.wav", "test_output.wav")
28
+ ```
29
+
30
+
31
+
32
+
33
  ## Example
34
  ### Degraded Input:
35
 
 
63
  - **Pretrained Model**: Includes a 301 million parameter transformer model with pre-trained weights. (Model is still in the process of training, there will be further checkpoint updates)
64
 
65
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
 
68