|
from functools import partial |
|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
import scipy.stats as stats |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from timm.models.vision_transformer import Block |
|
|
|
from .diffloss import DiffLoss |
|
|
|
|
|
def mask_by_order(mask_len, order, bsz, seq_len): |
|
masking = torch.zeros(bsz, seq_len).to(device) |
|
masking = torch.scatter(masking, dim=-1, index=order[:, :mask_len.long()], src=torch.ones(bsz, seq_len).to(device)).bool() |
|
return masking |
|
|
|
|
|
class MAR(nn.Module): |
|
""" Masked Autoencoder with VisionTransformer backbone |
|
""" |
|
def __init__(self, img_size=256, vae_stride=16, patch_size=1, |
|
encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16, |
|
decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16, |
|
mlp_ratio=4., norm_layer=nn.LayerNorm, |
|
vae_embed_dim=16, |
|
mask_ratio_min=0.7, |
|
label_drop_prob=0.1, |
|
class_num=1000, |
|
attn_dropout=0.1, |
|
proj_dropout=0.1, |
|
buffer_size=64, |
|
diffloss_d=3, |
|
diffloss_w=1024, |
|
num_sampling_steps='100', |
|
diffusion_batch_mul=4, |
|
grad_checkpointing=False, |
|
): |
|
super().__init__() |
|
|
|
|
|
|
|
self.vae_embed_dim = vae_embed_dim |
|
|
|
self.img_size = img_size |
|
self.vae_stride = vae_stride |
|
self.patch_size = patch_size |
|
self.seq_h = self.seq_w = img_size // vae_stride // patch_size |
|
self.seq_len = self.seq_h * self.seq_w |
|
self.token_embed_dim = vae_embed_dim * patch_size**2 |
|
self.grad_checkpointing = grad_checkpointing |
|
|
|
|
|
|
|
self.num_classes = class_num |
|
self.class_emb = nn.Embedding(1000, encoder_embed_dim) |
|
self.label_drop_prob = label_drop_prob |
|
|
|
self.fake_latent = nn.Parameter(torch.zeros(1, encoder_embed_dim)) |
|
|
|
|
|
|
|
self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - 1.0) / 0.25, 0, loc=1.0, scale=0.25) |
|
|
|
|
|
|
|
self.z_proj = nn.Linear(self.token_embed_dim, encoder_embed_dim, bias=True) |
|
self.z_proj_ln = nn.LayerNorm(encoder_embed_dim, eps=1e-6) |
|
self.buffer_size = buffer_size |
|
self.encoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, encoder_embed_dim)) |
|
|
|
self.encoder_blocks = nn.ModuleList([ |
|
Block(encoder_embed_dim, encoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, |
|
proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(encoder_depth)]) |
|
self.encoder_norm = norm_layer(encoder_embed_dim) |
|
|
|
|
|
|
|
self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True) |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim)) |
|
self.decoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, decoder_embed_dim)) |
|
|
|
self.decoder_blocks = nn.ModuleList([ |
|
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, |
|
proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(decoder_depth)]) |
|
|
|
self.decoder_norm = norm_layer(decoder_embed_dim) |
|
self.diffusion_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len, decoder_embed_dim)) |
|
|
|
self.initialize_weights() |
|
|
|
|
|
|
|
self.diffloss = DiffLoss( |
|
target_channels=self.token_embed_dim, |
|
z_channels=decoder_embed_dim, |
|
width=diffloss_w, |
|
depth=diffloss_d, |
|
num_sampling_steps=num_sampling_steps, |
|
grad_checkpointing=grad_checkpointing |
|
) |
|
self.diffusion_batch_mul = diffusion_batch_mul |
|
|
|
def initialize_weights(self): |
|
|
|
torch.nn.init.normal_(self.class_emb.weight, std=.02) |
|
torch.nn.init.normal_(self.fake_latent, std=.02) |
|
torch.nn.init.normal_(self.mask_token, std=.02) |
|
torch.nn.init.normal_(self.encoder_pos_embed_learned, std=.02) |
|
torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02) |
|
torch.nn.init.normal_(self.diffusion_pos_embed_learned, std=.02) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
|
|
torch.nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
if m.weight is not None: |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def patchify(self, x): |
|
bsz, c, h, w = x.shape |
|
p = self.patch_size |
|
h_, w_ = h // p, w // p |
|
|
|
x = x.reshape(bsz, c, h_, p, w_, p) |
|
x = torch.einsum('nchpwq->nhwcpq', x) |
|
x = x.reshape(bsz, h_ * w_, c * p ** 2) |
|
return x |
|
|
|
def unpatchify(self, x): |
|
bsz = x.shape[0] |
|
p = self.patch_size |
|
c = self.vae_embed_dim |
|
h_, w_ = self.seq_h, self.seq_w |
|
|
|
x = x.reshape(bsz, h_, w_, c, p, p) |
|
x = torch.einsum('nhwcpq->nchpwq', x) |
|
x = x.reshape(bsz, c, h_ * p, w_ * p) |
|
return x |
|
|
|
def sample_orders(self, bsz): |
|
|
|
orders = [] |
|
for _ in range(bsz): |
|
order = np.array(list(range(self.seq_len))) |
|
np.random.shuffle(order) |
|
orders.append(order) |
|
orders = torch.Tensor(np.array(orders)).to(device).long() |
|
return orders |
|
|
|
def random_masking(self, x, orders): |
|
|
|
bsz, seq_len, embed_dim = x.shape |
|
mask_rate = self.mask_ratio_generator.rvs(1)[0] |
|
num_masked_tokens = int(np.ceil(seq_len * mask_rate)) |
|
mask = torch.zeros(bsz, seq_len, device=x.device) |
|
mask = torch.scatter(mask, dim=-1, index=orders[:, :num_masked_tokens], |
|
src=torch.ones(bsz, seq_len, device=x.device)) |
|
return mask |
|
|
|
def forward_mae_encoder(self, x, mask, class_embedding): |
|
x = self.z_proj(x) |
|
bsz, seq_len, embed_dim = x.shape |
|
|
|
|
|
x = torch.cat([torch.zeros(bsz, self.buffer_size, embed_dim, device=x.device), x], dim=1) |
|
mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1) |
|
|
|
|
|
if self.training: |
|
drop_latent_mask = torch.rand(bsz) < self.label_drop_prob |
|
drop_latent_mask = drop_latent_mask.unsqueeze(-1).to(device).to(x.dtype) |
|
class_embedding = drop_latent_mask * self.fake_latent + (1 - drop_latent_mask) * class_embedding |
|
|
|
x[:, :self.buffer_size] = class_embedding.unsqueeze(1) |
|
|
|
|
|
x = x + self.encoder_pos_embed_learned |
|
x = self.z_proj_ln(x) |
|
|
|
|
|
x = x[(1-mask_with_buffer).nonzero(as_tuple=True)].reshape(bsz, -1, embed_dim) |
|
|
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
for block in self.encoder_blocks: |
|
x = checkpoint(block, x) |
|
else: |
|
for block in self.encoder_blocks: |
|
x = block(x) |
|
x = self.encoder_norm(x) |
|
|
|
return x |
|
|
|
def forward_mae_decoder(self, x, mask): |
|
|
|
x = self.decoder_embed(x) |
|
mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1) |
|
|
|
|
|
mask_tokens = self.mask_token.repeat(mask_with_buffer.shape[0], mask_with_buffer.shape[1], 1).to(x.dtype) |
|
x_after_pad = mask_tokens.clone() |
|
x_after_pad[(1 - mask_with_buffer).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2]) |
|
|
|
|
|
x = x_after_pad + self.decoder_pos_embed_learned |
|
|
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
for block in self.decoder_blocks: |
|
x = checkpoint(block, x) |
|
else: |
|
for block in self.decoder_blocks: |
|
x = block(x) |
|
x = self.decoder_norm(x) |
|
|
|
x = x[:, self.buffer_size:] |
|
x = x + self.diffusion_pos_embed_learned |
|
return x |
|
|
|
def forward_loss(self, z, target, mask): |
|
bsz, seq_len, _ = target.shape |
|
target = target.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1) |
|
z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1) |
|
mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul) |
|
loss = self.diffloss(z=z, target=target, mask=mask) |
|
return loss |
|
|
|
def forward(self, imgs, labels): |
|
|
|
|
|
class_embedding = self.class_emb(labels) |
|
|
|
|
|
x = self.patchify(imgs) |
|
gt_latents = x.clone().detach() |
|
orders = self.sample_orders(bsz=x.size(0)) |
|
mask = self.random_masking(x, orders) |
|
|
|
|
|
x = self.forward_mae_encoder(x, mask, class_embedding) |
|
|
|
|
|
z = self.forward_mae_decoder(x, mask) |
|
|
|
|
|
loss = self.forward_loss(z=z, target=gt_latents, mask=mask) |
|
|
|
return loss |
|
|
|
def sample_tokens(self, bsz, num_iter=64, cfg=1.0, cfg_schedule="linear", labels=None, temperature=1.0, progress=False): |
|
|
|
|
|
mask = torch.ones(bsz, self.seq_len).to(device) |
|
tokens = torch.zeros(bsz, self.seq_len, self.token_embed_dim).to(device) |
|
orders = self.sample_orders(bsz) |
|
|
|
indices = list(range(num_iter)) |
|
if progress: |
|
indices = tqdm(indices) |
|
|
|
for step in indices: |
|
cur_tokens = tokens.clone() |
|
|
|
|
|
if labels is not None: |
|
class_embedding = self.class_emb(labels) |
|
else: |
|
class_embedding = self.fake_latent.repeat(bsz, 1) |
|
if not cfg == 1.0: |
|
tokens = torch.cat([tokens, tokens], dim=0) |
|
class_embedding = torch.cat([class_embedding, self.fake_latent.repeat(bsz, 1)], dim=0) |
|
mask = torch.cat([mask, mask], dim=0) |
|
|
|
|
|
x = self.forward_mae_encoder(tokens, mask, class_embedding) |
|
|
|
|
|
z = self.forward_mae_decoder(x, mask) |
|
|
|
|
|
mask_ratio = np.cos(math.pi / 2. * (step + 1) / num_iter) |
|
mask_len = torch.Tensor([np.floor(self.seq_len * mask_ratio)]).to(device) |
|
|
|
|
|
mask_len = torch.maximum(torch.Tensor([1]).to(device), |
|
torch.minimum(torch.sum(mask, dim=-1, keepdims=True) - 1, mask_len)) |
|
|
|
|
|
mask_next = mask_by_order(mask_len[0], orders, bsz, self.seq_len) |
|
if step >= num_iter - 1: |
|
mask_to_pred = mask[:bsz].bool() |
|
else: |
|
mask_to_pred = torch.logical_xor(mask[:bsz].bool(), mask_next.bool()) |
|
mask = mask_next |
|
if not cfg == 1.0: |
|
mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0) |
|
|
|
|
|
z = z[mask_to_pred.nonzero(as_tuple=True)] |
|
|
|
if cfg_schedule == "linear": |
|
cfg_iter = 1 + (cfg - 1) * (self.seq_len - mask_len[0]) / self.seq_len |
|
elif cfg_schedule == "constant": |
|
cfg_iter = cfg |
|
else: |
|
raise NotImplementedError |
|
sampled_token_latent = self.diffloss.sample(z, temperature, cfg_iter) |
|
if not cfg == 1.0: |
|
sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0) |
|
mask_to_pred, _ = mask_to_pred.chunk(2, dim=0) |
|
|
|
cur_tokens[mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent |
|
tokens = cur_tokens.clone() |
|
|
|
|
|
tokens = self.unpatchify(tokens) |
|
return tokens |
|
|
|
|
|
def mar_base(**kwargs): |
|
model = MAR( |
|
encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, |
|
decoder_embed_dim=768, decoder_depth=12, decoder_num_heads=12, |
|
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) |
|
return model |
|
|
|
|
|
def mar_large(**kwargs): |
|
model = MAR( |
|
encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16, |
|
decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16, |
|
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) |
|
return model |
|
|
|
|
|
def mar_huge(**kwargs): |
|
model = MAR( |
|
encoder_embed_dim=1280, encoder_depth=20, encoder_num_heads=16, |
|
decoder_embed_dim=1280, decoder_depth=20, decoder_num_heads=16, |
|
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) |
|
return model |