mar / mar.py
jadechoghari's picture
Update mar.py
aaf4bdc verified
raw
history blame
14.3 kB
from functools import partial
import numpy as np
from tqdm import tqdm
import scipy.stats as stats
import math
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from timm.models.vision_transformer import Block
from .diffloss import DiffLoss
def mask_by_order(mask_len, order, bsz, seq_len):
masking = torch.zeros(bsz, seq_len).to(device)
masking = torch.scatter(masking, dim=-1, index=order[:, :mask_len.long()], src=torch.ones(bsz, seq_len).to(device)).bool()
return masking
class MAR(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, img_size=256, vae_stride=16, patch_size=1,
encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16,
decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm,
vae_embed_dim=16,
mask_ratio_min=0.7,
label_drop_prob=0.1,
class_num=1000,
attn_dropout=0.1,
proj_dropout=0.1,
buffer_size=64,
diffloss_d=3,
diffloss_w=1024,
num_sampling_steps='100',
diffusion_batch_mul=4,
grad_checkpointing=False,
):
super().__init__()
# --------------------------------------------------------------------------
# VAE and patchify specifics
self.vae_embed_dim = vae_embed_dim
self.img_size = img_size
self.vae_stride = vae_stride
self.patch_size = patch_size
self.seq_h = self.seq_w = img_size // vae_stride // patch_size
self.seq_len = self.seq_h * self.seq_w
self.token_embed_dim = vae_embed_dim * patch_size**2
self.grad_checkpointing = grad_checkpointing
# --------------------------------------------------------------------------
# Class Embedding
self.num_classes = class_num
self.class_emb = nn.Embedding(1000, encoder_embed_dim)
self.label_drop_prob = label_drop_prob
# Fake class embedding for CFG's unconditional generation
self.fake_latent = nn.Parameter(torch.zeros(1, encoder_embed_dim))
# --------------------------------------------------------------------------
# MAR variant masking ratio, a left-half truncated Gaussian centered at 100% masking ratio with std 0.25
self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - 1.0) / 0.25, 0, loc=1.0, scale=0.25)
# --------------------------------------------------------------------------
# MAR encoder specifics
self.z_proj = nn.Linear(self.token_embed_dim, encoder_embed_dim, bias=True)
self.z_proj_ln = nn.LayerNorm(encoder_embed_dim, eps=1e-6)
self.buffer_size = buffer_size
self.encoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, encoder_embed_dim))
self.encoder_blocks = nn.ModuleList([
Block(encoder_embed_dim, encoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(encoder_depth)])
self.encoder_norm = norm_layer(encoder_embed_dim)
# --------------------------------------------------------------------------
# MAR decoder specifics
self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, decoder_embed_dim))
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
self.diffusion_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len, decoder_embed_dim))
self.initialize_weights()
# --------------------------------------------------------------------------
# Diffusion Loss
self.diffloss = DiffLoss(
target_channels=self.token_embed_dim,
z_channels=decoder_embed_dim,
width=diffloss_w,
depth=diffloss_d,
num_sampling_steps=num_sampling_steps,
grad_checkpointing=grad_checkpointing
)
self.diffusion_batch_mul = diffusion_batch_mul
def initialize_weights(self):
# parameters
torch.nn.init.normal_(self.class_emb.weight, std=.02)
torch.nn.init.normal_(self.fake_latent, std=.02)
torch.nn.init.normal_(self.mask_token, std=.02)
torch.nn.init.normal_(self.encoder_pos_embed_learned, std=.02)
torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02)
torch.nn.init.normal_(self.diffusion_pos_embed_learned, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if m.weight is not None:
nn.init.constant_(m.weight, 1.0)
def patchify(self, x):
bsz, c, h, w = x.shape
p = self.patch_size
h_, w_ = h // p, w // p
x = x.reshape(bsz, c, h_, p, w_, p)
x = torch.einsum('nchpwq->nhwcpq', x)
x = x.reshape(bsz, h_ * w_, c * p ** 2)
return x # [n, l, d]
def unpatchify(self, x):
bsz = x.shape[0]
p = self.patch_size
c = self.vae_embed_dim
h_, w_ = self.seq_h, self.seq_w
x = x.reshape(bsz, h_, w_, c, p, p)
x = torch.einsum('nhwcpq->nchpwq', x)
x = x.reshape(bsz, c, h_ * p, w_ * p)
return x # [n, c, h, w]
def sample_orders(self, bsz):
# generate a batch of random generation orders
orders = []
for _ in range(bsz):
order = np.array(list(range(self.seq_len)))
np.random.shuffle(order)
orders.append(order)
orders = torch.Tensor(np.array(orders)).to(device).long()
return orders
def random_masking(self, x, orders):
# generate token mask
bsz, seq_len, embed_dim = x.shape
mask_rate = self.mask_ratio_generator.rvs(1)[0]
num_masked_tokens = int(np.ceil(seq_len * mask_rate))
mask = torch.zeros(bsz, seq_len, device=x.device)
mask = torch.scatter(mask, dim=-1, index=orders[:, :num_masked_tokens],
src=torch.ones(bsz, seq_len, device=x.device))
return mask
def forward_mae_encoder(self, x, mask, class_embedding):
x = self.z_proj(x)
bsz, seq_len, embed_dim = x.shape
# concat buffer
x = torch.cat([torch.zeros(bsz, self.buffer_size, embed_dim, device=x.device), x], dim=1)
mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1)
# random drop class embedding during training
if self.training:
drop_latent_mask = torch.rand(bsz) < self.label_drop_prob
drop_latent_mask = drop_latent_mask.unsqueeze(-1).to(device).to(x.dtype)
class_embedding = drop_latent_mask * self.fake_latent + (1 - drop_latent_mask) * class_embedding
x[:, :self.buffer_size] = class_embedding.unsqueeze(1)
# encoder position embedding
x = x + self.encoder_pos_embed_learned
x = self.z_proj_ln(x)
# dropping
x = x[(1-mask_with_buffer).nonzero(as_tuple=True)].reshape(bsz, -1, embed_dim)
# apply Transformer blocks
if self.grad_checkpointing and not torch.jit.is_scripting():
for block in self.encoder_blocks:
x = checkpoint(block, x)
else:
for block in self.encoder_blocks:
x = block(x)
x = self.encoder_norm(x)
return x
def forward_mae_decoder(self, x, mask):
x = self.decoder_embed(x)
mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1)
# pad mask tokens
mask_tokens = self.mask_token.repeat(mask_with_buffer.shape[0], mask_with_buffer.shape[1], 1).to(x.dtype)
x_after_pad = mask_tokens.clone()
x_after_pad[(1 - mask_with_buffer).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
# decoder position embedding
x = x_after_pad + self.decoder_pos_embed_learned
# apply Transformer blocks
if self.grad_checkpointing and not torch.jit.is_scripting():
for block in self.decoder_blocks:
x = checkpoint(block, x)
else:
for block in self.decoder_blocks:
x = block(x)
x = self.decoder_norm(x)
x = x[:, self.buffer_size:]
x = x + self.diffusion_pos_embed_learned
return x
def forward_loss(self, z, target, mask):
bsz, seq_len, _ = target.shape
target = target.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1)
z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1)
mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul)
loss = self.diffloss(z=z, target=target, mask=mask)
return loss
def forward(self, imgs, labels):
# class embed
class_embedding = self.class_emb(labels)
# patchify and mask (drop) tokens
x = self.patchify(imgs)
gt_latents = x.clone().detach()
orders = self.sample_orders(bsz=x.size(0))
mask = self.random_masking(x, orders)
# mae encoder
x = self.forward_mae_encoder(x, mask, class_embedding)
# mae decoder
z = self.forward_mae_decoder(x, mask)
# diffloss
loss = self.forward_loss(z=z, target=gt_latents, mask=mask)
return loss
def sample_tokens(self, bsz, num_iter=64, cfg=1.0, cfg_schedule="linear", labels=None, temperature=1.0, progress=False):
# init and sample generation orders
mask = torch.ones(bsz, self.seq_len).to(device)
tokens = torch.zeros(bsz, self.seq_len, self.token_embed_dim).to(device)
orders = self.sample_orders(bsz)
indices = list(range(num_iter))
if progress:
indices = tqdm(indices)
# generate latents
for step in indices:
cur_tokens = tokens.clone()
# class embedding and CFG
if labels is not None:
class_embedding = self.class_emb(labels)
else:
class_embedding = self.fake_latent.repeat(bsz, 1)
if not cfg == 1.0:
tokens = torch.cat([tokens, tokens], dim=0)
class_embedding = torch.cat([class_embedding, self.fake_latent.repeat(bsz, 1)], dim=0)
mask = torch.cat([mask, mask], dim=0)
# mae encoder
x = self.forward_mae_encoder(tokens, mask, class_embedding)
# mae decoder
z = self.forward_mae_decoder(x, mask)
# mask ratio for the next round, following MaskGIT and MAGE.
mask_ratio = np.cos(math.pi / 2. * (step + 1) / num_iter)
mask_len = torch.Tensor([np.floor(self.seq_len * mask_ratio)]).to(device)
# masks out at least one for the next iteration
mask_len = torch.maximum(torch.Tensor([1]).to(device),
torch.minimum(torch.sum(mask, dim=-1, keepdims=True) - 1, mask_len))
# get masking for next iteration and locations to be predicted in this iteration
mask_next = mask_by_order(mask_len[0], orders, bsz, self.seq_len)
if step >= num_iter - 1:
mask_to_pred = mask[:bsz].bool()
else:
mask_to_pred = torch.logical_xor(mask[:bsz].bool(), mask_next.bool())
mask = mask_next
if not cfg == 1.0:
mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0)
# sample token latents for this step
z = z[mask_to_pred.nonzero(as_tuple=True)]
# cfg schedule follow Muse
if cfg_schedule == "linear":
cfg_iter = 1 + (cfg - 1) * (self.seq_len - mask_len[0]) / self.seq_len
elif cfg_schedule == "constant":
cfg_iter = cfg
else:
raise NotImplementedError
sampled_token_latent = self.diffloss.sample(z, temperature, cfg_iter)
if not cfg == 1.0:
sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0) # Remove null class samples
mask_to_pred, _ = mask_to_pred.chunk(2, dim=0)
cur_tokens[mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
tokens = cur_tokens.clone()
# unpatchify
tokens = self.unpatchify(tokens)
return tokens
def mar_base(**kwargs):
model = MAR(
encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12,
decoder_embed_dim=768, decoder_depth=12, decoder_num_heads=12,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mar_large(**kwargs):
model = MAR(
encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16,
decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mar_huge(**kwargs):
model = MAR(
encoder_embed_dim=1280, encoder_depth=20, encoder_num_heads=16,
decoder_embed_dim=1280, decoder_depth=20, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model