File size: 2,582 Bytes
e53e4fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
from diffusers import AutoencoderKL, DiffusionPipeline
from transformers import CLIPTextModel, CLIPTokenizer
from mv_unet import SPADUnetModel
from diffusers.schedulers import DPMSolverMultistepScheduler

class SPADPipeline(DiffusionPipeline):
    def __init__(
        self,
        vae: AutoencoderKL,
        unet: SPADUnetModel,
        tokenizer: CLIPTokenizer,
        text_encoder: CLIPTextModel,
        scheduler: DPMSolverMultistepScheduler,
    ):
        super().__init__()

        self.vae = vae
        self.unet = unet
        self.tokenizer = tokenizer
        self.text_encoder = text_encoder
        self.scheduler = scheduler

        # make sure all our models are on the same device
        self.vae.to(self.device)
        self.unet.to(self.device)
        self.text_encoder.to(self.device)

    def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None):
        text_input = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt"
        )
        text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]

        # we duplicate the text embeddings for each generation, just to save time :)
        bs_embed, seq_len, _ = text_embeddings.shape
        text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
        text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)

        return text_embeddings

    def __call__(self, prompt, num_inference_steps=50, guidance_scale=7.5):
        # encide the prompt into the text embeddings
        text_embeddings = self.encode_prompt(prompt, self.device, 1, do_classifier_free_guidance=False)

        # this is the initial noise sample
        latents = torch.randn(
            (text_embeddings.shape[0], self.unet.in_channels, self.unet.image_size, self.unet.image_size),
            device=self.device
        )

        # setting up the scheduler
        self.scheduler.set_timesteps(num_inference_steps)

        # iterate and generate
        for t in self.scheduler.timesteps:
            latents = self.scheduler.scale_model_input(latents, t)
            latents = self.unet(latents, t, text_embeddings)["sample"]
            latents = self.scheduler.step(latents, t, latents, guidance_scale=guidance_scale)["prev_sample"]

        # decode latents into images
        images = self.vae.decode(latents)
        images = (images / 2 + 0.5).clamp(0, 1)

        return images