vfusion3d / transformer.py
jadechoghari's picture
Create transformer.py
c56ba76 verified
raw
history blame
5.38 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
class ModLN(nn.Module):
"""
Modulation with adaLN.
References:
DiT: https://github.com/facebookresearch/DiT/blob/main/models.py#L101
"""
def __init__(self, inner_dim: int, mod_dim: int, eps: float):
super().__init__()
self.norm = nn.LayerNorm(inner_dim, eps=eps)
self.mlp = nn.Sequential(
nn.SiLU(),
nn.Linear(mod_dim, inner_dim * 2),
)
@staticmethod
def modulate(x, shift, scale):
# x: [N, L, D]
# shift, scale: [N, D]
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def forward(self, x, cond):
shift, scale = self.mlp(cond).chunk(2, dim=-1) # [N, D]
return self.modulate(self.norm(x), shift, scale) # [N, L, D]
class ConditionModulationBlock(nn.Module):
"""
Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks.
"""
# use attention from torch.nn.MultiHeadAttention
# Block contains a cross-attention layer, a self-attention layer, and a MLP
def __init__(self, inner_dim: int, cond_dim: int, mod_dim: int, num_heads: int, eps: float,
attn_drop: float = 0., attn_bias: bool = False,
mlp_ratio: float = 4., mlp_drop: float = 0.):
super().__init__()
self.norm1 = ModLN(inner_dim, mod_dim, eps)
self.cross_attn = nn.MultiheadAttention(
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim,
dropout=attn_drop, bias=attn_bias, batch_first=True)
self.norm2 = ModLN(inner_dim, mod_dim, eps)
self.self_attn = nn.MultiheadAttention(
embed_dim=inner_dim, num_heads=num_heads,
dropout=attn_drop, bias=attn_bias, batch_first=True)
self.norm3 = ModLN(inner_dim, mod_dim, eps)
self.mlp = nn.Sequential(
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
nn.GELU(),
nn.Dropout(mlp_drop),
nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
nn.Dropout(mlp_drop),
)
def forward(self, x, cond, mod):
# x: [N, L, D]
# cond: [N, L_cond, D_cond]
# mod: [N, D_mod]
x = x + self.cross_attn(self.norm1(x, mod), cond, cond, need_weights=False)[0]
before_sa = self.norm2(x, mod)
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
x = x + self.mlp(self.norm3(x, mod))
return x
class TriplaneTransformer(nn.Module):
"""
Transformer with condition and modulation that generates a triplane representation.
Reference:
Timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L486
"""
def __init__(self, inner_dim: int, image_feat_dim: int, camera_embed_dim: int,
triplane_low_res: int, triplane_high_res: int, triplane_dim: int,
num_layers: int, num_heads: int,
eps: float = 1e-6):
super().__init__()
# attributes
self.triplane_low_res = triplane_low_res
self.triplane_high_res = triplane_high_res
self.triplane_dim = triplane_dim
# modules
# initialize pos_embed with 1/sqrt(dim) * N(0, 1)
self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, inner_dim) * (1. / inner_dim) ** 0.5)
self.layers = nn.ModuleList([
ConditionModulationBlock(
inner_dim=inner_dim, cond_dim=image_feat_dim, mod_dim=camera_embed_dim, num_heads=num_heads, eps=eps)
for _ in range(num_layers)
])
self.norm = nn.LayerNorm(inner_dim, eps=eps)
self.deconv = nn.ConvTranspose2d(inner_dim, triplane_dim, kernel_size=2, stride=2, padding=0)
def forward(self, image_feats, camera_embeddings):
# image_feats: [N, L_cond, D_cond]
# camera_embeddings: [N, D_mod]
assert image_feats.shape[0] == camera_embeddings.shape[0], \
f"Mismatched batch size: {image_feats.shape[0]} vs {camera_embeddings.shape[0]}"
N = image_feats.shape[0]
H = W = self.triplane_low_res
L = 3 * H * W
x = self.pos_embed.repeat(N, 1, 1) # [N, L, D]
for layer in self.layers:
x = layer(x, image_feats, camera_embeddings)
x = self.norm(x)
# separate each plane and apply deconv
x = x.view(N, 3, H, W, -1)
x = torch.einsum('nihwd->indhw', x) # [3, N, D, H, W]
x = x.contiguous().view(3*N, -1, H, W) # [3*N, D, H, W]
x = self.deconv(x) # [3*N, D', H', W']
x = x.view(3, N, *x.shape[-3:]) # [3, N, D', H', W']
x = torch.einsum('indhw->nidhw', x) # [N, 3, D', H', W']
x = x.contiguous()
assert self.triplane_high_res == x.shape[-2], \
f"Output triplane resolution does not match with expected: {x.shape[-2]} vs {self.triplane_high_res}"
assert self.triplane_dim == x.shape[-3], \
f"Output triplane dimension does not match with expected: {x.shape[-3]} vs {self.triplane_dim}"
return x